
297

EFFICIENT HAPLOTYPE INFERENCE FROM PEDIGREES WITH MISSING DATA USING
LINEAR SYSTEMS WITH DISJOINT-SET DATA STRUCTURES

Xin Li and Jing Li∗

Department of Electrical Engineering and Computer Science, Case Western Reserve University,
Cleveland, OH, 44106
∗Email: jingli@case.edu

We study the haplotype inference problem from pedigree data under the zero recombination assumption, which is well
supported by real data for tightly linked markers (i.e., single nucleotide polymorphisms (SNPs)) over a relatively large
chromosome segment. We solve the problem in a rigorous mathematical manner by formulating genotype constraints
as a linear system of inheritance variables. We then utilize disjoint-set structures to encode connectivity information
among individuals, to detect constraints from genotypes, and to check consistency of constraints. On a tree pedigree
without missing data, our algorithm can output a general solution as well as the number of total specific solutions
in a nearly linear time O(mn · α(n)), where m is the number of loci, n is the number of individuals and α is the
inverse Ackermann function4, which is a further improvement over existing ones3, 8, 12, 15. We also extend the idea to
looped pedigrees and pedigrees with missing data by considering existing (partial) constraints on inheritance variables.
The algorithm has been implemented in C++ and will be incorporated into our PedPhase package8 . Experimental
results show that it can correctly identify all 0-recombinant solutions with great efficiency. Comparisons with other
two popular algorithms show that the proposed algorithm achieves 10 to 105-fold improvements over a variety of
parameter settings. The experimental study also provides empirical evidences on the complexity bounds suggested
by theoretical analysis.

1. INTRODUCTION

Experimental data have shown that genetic varia-
tion is structured in haplotypes rather than isolated
SNPs14 and haplotypes may provide substantially in-
creased power in detecting gene-disease association.
However, the human genome is a diploid and, in
practice, haplotype data are not collected directly,
especially in large scale sequencing projects mainly
due to cost considerations. Hence, efficient and accu-
rate computational methods and computer programs
for the inference of haplotypes from genotypes are
highly needed.

Recent years have witnessed intensive research
on haplotyping methods (see reviews2, 5, 6, 10, 17),
mainly driven by the HapMap project14. For fam-
ily data, there exist two types of haplotyping meth-
ods, statistical methods and combinatorial (or rule-
based) methods. And there is a tendency to merge
these two types of approaches9, 16. In general, the
goal of statistical approaches1 is to find a haplotype
assignment for each individual with the maximum
likelihood or to output all consistent solutions with
their corresponding probabilities. Recently, popu-

lation haplotype frequencies have been taken into
considerations1 to account for correlations among
tightly linked markers (known as linkage disequilib-
rium). A key step in most statistical approaches is
to enumerate all possible inheritance patterns and
to check the genotype consistency for each of them1.
Due to the large degrees of freedom, this step usually
leads to high time complexity (usually exponential
hence computational intractable for large data sets).
On the other hand, rule-based algorithms first par-
tially infer haplotypes or inheritance vectors based
on genotype constraints, and then search final solu-
tions from the reduced space. Therefore, rule-based
algorithms3, 8, 9, 12, 15 can potentially gain advan-
tage over statistical methods in efficiency. The zero
recombinant assumption states that recombination is
nonexistent within a pedigree for a sufficiently large
number of tightly linked markers. As a realistic as-
sumption, it has been used in both statistical ap-
proaches as well as rule-based approaches. Further-
more, a solution to the problem with no recombinant
can be served as a subroutine of a general proce-
dure to solve the general haplotype inference prob-
lem. Therefore, investigation of efficient algorithms

∗Corresponding author.

298

to obtain all 0-recombinant solutions from a pedigree
is of high interests.

For a given pedigree, the goal of the zero recom-
binant haplotype configuration (ZRHC) problem is to
identify all possible haplotype assignments with no
recombination. An important advance in the devel-
opment of rule-based algorithms for haplotype infer-
ence in pedigrees in general and the ZRHC problem
in particular is the introduction of variables to rep-
resent uncertainties. The problem can then be dis-
cussed and solved with mathematical rigor. Li and
Jiang8 first formulate the problem as a linear system
on “ps” (a binary indicator of parental source) vari-
ables and solve it using Gaussian elimination with a
complexity of O(m3n3), where m is the number of
markers and n is the number of individuals. More
recently, Xiao et al.15 formulate another linear sys-
tem on “h” (a binary indicator of inheritance re-
lationship) variables, and lower the complexity to
O(mn2 + n3 log2 n log log n). For loop-free (tree)
pedigrees, Xiao’s method can produce a general so-
lution in O(mn2 + n3) and a particular solution in
O(mn + n3) time. Here, a particular solution means
a specific assignment for each variable which satisfies
the constraints, while a general solution is a descrip-
tion of all solutions in a general form where some
variables are designated as free (meaning that they
are allowed to take any value), and the remaining
variables are represented by a linear combination of
these free variables. For tree pedigrees, Chan et al.3

further reduce the complexity of finding a particular
solution to a linear time O(mn) by manipulating the
constraints on a graph structure. Liu and Jiang12

also propose an algorithm to produce a particular
solution in O(mn) and a general solution in O(mn2)
by further exploring features of their h variable sys-
tem on a tree pedigree. However, with missing data,
it has been shown that ZRHC is NP-hard11. There-
fore, it seems impossible to incorporate missing data
into a pure linear constraint system without enu-
merations. Li and Jiang9 propose an integer linear
programming algorithm for the minimum recombi-
nant haplotype inference problem, and it can solve
ZRHC with missing as a special case. But because
it does not use zero recombinant constraints explic-
itly, it may need to enumerate almost all possible
haplotype assignments.

In this paper, we propose an elegant and more
efficient algorithm for detecting, recording and con-
sistency checking of constraints on h variables. No-
tice that it is not necessary to solve the h variable
system explicitly, as it was in Ref. 15. Instead, we
encode constraints on h variables using disjoint-set
forests. By applying an adapted disjoint-set union-
find procedure, we can update the disjoint-set struc-
tures incrementally upon new constraints, and de-
termine the consistency of the encoded linear sys-
tem simultaneously. Based on the disjoint-set union-
find procedure, the proposed algorithm can produce
a general solution in almost linear time (O(mn·α(n))
for a tree pedigree, where α is the inverse Ackermann
function4, improved from the best known algorithm
with O(mn2) time complexity12. We further extend
the algorithm to looped pedigrees and pedigrees with
missing data, by utilizing the constraints imposed
from existing data. Experimental results show that
the algorithm can output all solutions with zero re-
combinant and it is much more efficient than two
popular existing algorithms because of the significant
reduction of the enumeration space.

The rest of the paper is organized as follows.
In section 2, we introduce the linear system on h

variables together with some basic concepts and no-
tations concerning the ZRHC problem. By repre-
senting constraints using a linear system, one can
formally investigate different strategies to solve the
problem in a rigorous manner. And different strate-
gies of manipulating and integrating the constraints
will result in different complexities. Our algorithm
of detecting and processing constraints from pedi-
gree data is presented in section 3. In both sections,
we assume input genotype data has no missing alle-
les and the ZRHC problem under this case is poly-
nomially solvable. Our algorithm is almost optimal
by achieving a nearly linear time complexity on tree
pedigrees with complete data. In section 4, we show
how to extend the algorithm to cope with missing
data and looped pedigrees by effectively reducing
the search space before enumerations. The perfor-
mance of our algorithm and comparisons with other
two programs are examined in section 5. We dis-
cuss future directions and make concluding remarks
in section 6.

299

2. PRELIMINARIES

A pedigree graph indicates the parent-child rela-
tionships among an extended family. Figures 1(a)
and 2(a) present pedigrees in a conventional man-
ner. The pedigree in Figure 1(a) has a mating loop,
where an offspring (node 9) is produced by the mat-
ing of two relatives (node 6 and 7). A pedigree with-
out mating loops is called a tree pedigree. A nuclear
family only consists of both parents and their chil-
dren. For any pair of homologous chromosomes from
a diploid organism such as human, exactly one is
from its father and the other one is from its mother,
as illustrated in Figure 1(b). A physical position on
a chromosome is called a locus and the status of a
locus is called an allele, represented using an inte-
ger ID. We focus on SNP data in this study thus
assume there are only two alternative alleles (i.e., bi-
allelic data), which turns to be the hardest case for
ZRHC8, 15.

(a) (b) (c)

Fig. 1. (a) A pedigree graph. We use a circle to represent a
female, a square to represent a male in a pedigree. (b) A hap-
lotype is composed of all alleles on one chromosome segment.
Each allele is an integer value representing the status of a
marker at a chromosome locus. (c) A recombination event oc-
curs when a child does not inherit a complete haplotype from
its parent. Individual 3 has a paternal haplotype 11 which is
not seen in his father. So there must be a crossover between
two chromosomes of his father in meiosis, which results in a
recombinant haplotype.

At each locus i, a child may inherit either of the
paternal or maternal allele of a parent. We use bi-
nary variables to indicate parental source (ps) of the
two alleles in a child.

Definition 2.1. ps variable px
i ∈ {0, 1} is defined

for each locus i of each individual x. px
i = 0 if the

smaller allele of locus i is of paternal source, px
i = 1

if it is of maternal source. We technically let px
i = 0

if locus i is homozygous (two alleles being the same).

Loosely speaking, a haplotype consists of all alleles on
a chromosome. Recombination events or crossovers
occur when a child inherits a shuffled version of its

parent’s two haplotypes (see Figure 1(c) for an ex-
ample). However, for a sufficiently large segment
of chromosome with m SNPs, the likelihood of re-
combination between a parent-child pair is extremely
small. For example, a rough estimation of the rela-
tionship of genetic distances and physical distances
is about 1 Mbps/cM. The average marker interval
distance of a 500K SNP chip is about 6 Kbps. There-
fore, the probability of seeing a single recombination
event from a parent-child pair of 170 SNP markers
(∼1Mbps) is only ∼1%. One can assume a child
inherits an entire haplotype segment from a parent
for a sufficiently large number of SNPs (i.e., zero
recombinant assumption). In such a case, the inheri-
tance behavior between a parent-child pair is unique
throughout all m loci, and it is convenient and prac-
tically appealing to use a single binary variable (h) to
indicate the inheritance behavior between a parent-
child pair.

Definition 2.2. Inheritance variable hx1x2 ∈ {0, 1}
is defined between a parent x1 and a child x2.
hx1x2 = 0 if x2 inherits the paternal haplotype of
x1, hx1x2 = 1 if x2 inherits the maternal haplotype
of x1.

2.1. Mendelian constraints as a linear
system

Mendelian laws of inheritance impose constraints on
ps and h variables for each parent-child pair at each
locus. These constraints can be represented by a lin-
ear relationship of ps and h variables over the group
(Z2, +) (where 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0). Ta-
ble 1 summarizes all cases of constraints at a certain
locus i for a parent-child pair. When an individual
is homozygous at a certain locus, its ps variable at
this locus is determined by definition. When one
or both of the parents of an individual are homozy-
gous at a certain locus, this individual’s ps variable
at this locus is also determined. In both cases, the
ps variable is pre-determined. In all the other cases,
there is a constraint for each parent-child pair be-
tween ps variables and the h variable, as shown in
the last three cases in Table 1. The constraints in-
troduced by the zero recombinant assumption is en-
forced by the single h variable between each parent-
child pair. Therefore, the system formed by the sets

300

of constraints collected based on Table 1 consists of
all the constraints from data. The satisfiability (or
consistency) of this system is equivalent to whether
there is a zero recombinant solution.

Table 1. Constraints for a parent-child pair x, y.

genotype constraint

x y if x is father if x is mother

1/1 1/2 px
i = 0 py

i = 0 py
i = 1

2/2 1/2 px
i = 0 py

i = 1 py
i = 0

1/2 1/2 py
i = px

i + hxy py
i = px

i + hxy + 1
1/2 1/1 py

i = 0 py
i = px

i + hxy py
i = px

i + hxy

1/2 2/2 py
i = 0 py

i = px
i + hxy + 1 py

i = px
i + hxy + 1

2.2. Locus graphs

To process constraints, Xiao et al.15 introduced the
concept of locus graphs. We give a brief introduc-
tion here for the sake of completeness. A locus graph
Li(V, Ei) is constructed for each locus i to record the
constraints on h variables. V consists of all individ-
uals as nodes. There exists an edge in Ei between a
parent-child pair only if the ps variables of this pair
is constrained on the correspondent h variable, i.e.,
when the parent is heterozygous at locus i (the last
three cases in Table 1). Each edge is also labeled
by the h variable and the constant associated with
the constraint. We refer to this kind of constraints
(a linear equation consists of ps variables and a h

variable) as edge constraints. Figure 2(b) shows an
example of a locus graph.

(a) (b)

Fig. 2. (a) A pedigree with 8 members. (b) Given the geno-
type at a a certain locus i, the correspondent locus graph Li

and h variable constraints. ps variables of shaded members
(2, 4, 7, 8) are pre-determined. From this locus graph, we can
generate two non-redundant h variable constraints, one is a
cycle constraint, h35 + h36 + h45 + h46 = 0 (formed by indi-
vidual 3, 4, 5, 6), the other is a path constraint, h45 +h58 = 0
(from individual 4 to 8 via 5).

The original idea of Ref. 15 was to integrate
edge constraints to construct a new subsystem that

only consists of h variables. Their algorithm then
solved the subsystem and used h variable solutions
to solve ps variables. We also record edge constraints
on locus graphs. However, instead of explicitly list-
ing and solving the constraints on h variables, we
use disjoint-set structures to collect, encode and thus
examine the consistency of these constraints, which
help us achieve a better time complexity result to
obtain a general solution.

2.3. Linear constraints on h variables

There are essentially two types of constraints on h

variables in a locus graph Li: path constraints and
cycle constraints. Notice that the classification of
constraints here is more succinct than those in pre-
vious work12, 15 because our method of handling con-
straints does not require further discrimination of
them. According to Table 1, each edge exy in a lo-
cus graph represents an edge constraint in the form
px

i +py
i = hxy + cxy

i , where cxy
i is a constant ∈ {0, 1}.

We use a subscript i for cxy
i because for different loci,

the constant between a parent-child pair may be dif-
ferent, which depends on the genotype at that locus
as specified in Table 1. For a path Pṽs,vt

from indi-
vidual s to individual t in locus graph Li, if we sum
up all edge constraints on this path, we have

∑
exy∈Pṽs,vt

(px
i + py

i) = ps
i + pt

i =
∑

exy∈Pṽs,vt

(hxy + cxy
i).

If ps
i and pt

i are pre-determined constants, we end up
with a path constraint on h variables, which is

∑
exy∈Pṽs,vt

hxy = ps
i + pt

i +
∑

exy∈Pṽs,vt

cxy
i , (1)

where the right-hand side is a constant. Similarly, for
a cycle C in locus graph Li, which may exist even on
a tree pedigree (e.g., when a nuclear family has more
than one heterozygous children), we sum up all edge
constraints on C,

∑
exy∈C

(px
i + py

i) = 0 =
∑

exy∈C

(hxy + cxy
i),

and finally have a cycle constraint on h variables
∑

exy∈C

hxy =
∑

exy∈C

cxy
i .

301

(a) (b)

Fig. 3. Node splitting applied to a nuclear family at two loci to remove local cycles. (a) The original locus graph (left), and
the locus graph (right) with edges remounted after node 6 was duplicated. (b) A locus graph at another locus before (left) and
after (right) node 6 was split. Though no local cycle exists in the locus graph in b, node 6 was also duplicated so that all locus
graphs will still have the same number of nodes after splitting.

3. METHODS

By exploiting special features of the constraints on
h variables, it is not necessary to explicitly list every
path and cycle constraint to check their consistency.
We employ disjoint-set structures to detect and to
check the consistency of constraints on h variables.
For each locus graph Li, we build a disjoint-set struc-
ture Di to encode its connectivity information. We
update the disjoint-set structure incrementally upon
processing each edge constraint on a locus graph.
Path constraints on a locus graph are detected during
this process and will be stored in another disjoint-set
structure D. The whole algorithm works on m + 1
such disjoint-set structures, one Di for each locus
graph Li and one D for encoding all path constraints.
In this section, we assume the inputs are tree pedi-
grees with complete data. Cycles on a locus graph
from a tree pedigree can only be generated within a
nuclear family when it has multiple children. We first
discuss a node splitting strategy in subsection 3.1 to
break all such short cycles, to obtain only path con-
straints for further processing. Construction of Di

from each locus graph Li to detect path constraints
will be discussed in subsection 3.2. Processing of
constraints and consistency check will be discussed
in subsection 3.3 and a general solution of h vari-
ables will be decoded from the disjoint-set structure
D. Solutions of ps variables will then be obtained.
The analysis of time complexity and correctness of
the algorithm on tree pedigrees will be discussed in
subsection 3.4. One of the advantages of the pro-
posed algorithm is that it can be easily extended to
the general cases of looped pedigrees and pedigrees
with missing data. And we show these extensions in
section 4.

3.1. Split nodes to break cycles

In order to simplify the constraint detection, we first
transform cycle constraints to path constraints by
breaking cycles in locus graphs. There are essen-
tially two kinds of cycles in a locus graph: global
cycles that are introduced by marriages between rel-
atives and local cycles that are introduced by mul-
tiple children within one nuclear family (e.g., Figure
2(b)). Only local cycles will exist in a tree pedigree
and will be dealt with in this subsection. The treat-
ment of global cycles will be deferred to subsection
4.1 when we discuss the extension to looped pedi-
grees. We break local cycles for each nuclear family
with multiple children by splitting some child nodes
and by remounting their edges on each locus graph.
More specifically, when a nuclear family has multi-
ple children, any child node v (except an arbitrarily
fixed one v0) and its genotypes will be duplicated to
create a new node v′ in the same manner across all
locus graphs. New ps variables will be introduced
for these duplicated nodes. For each splitting node
v, the edge from its mother (if there is) will be re-
connected to node v′. All other edges regarding node
v remain untouched. Figure 3 shows an example on
how node splitting is performed. By doing so, we
technically avoid the treatment of cycle constraints.
After the duplication, all new locus graphs (actually
locus trees now) still have the same set of nodes. No-
tice that one has to record all local cycle constraints
on h variables and constraints that the ps variables
of duplicated nodes must have the same assignments
as those in their original copies. Their constraints
can be easily dealt with for local cycles because they
only involve local structures (nuclear families). This
will be further discussed in the next subsection.

302

3.2. Detect path constraints from locus
graphs

We develop an incremental procedure to detect all
path constraints from a locus graph by utilizing a
disjoint-set structure. As we can see from the con-
straints on h variables in Equation 1, a path con-
straint is specified by the ps variables of its end nodes
and summation of the constant parity value cxy

i asso-
ciated with the edge constraint on each of its edges.
Our goal is to detect each non-redundant path on
a locus graph with pre-determined end nodes and
meanwhile obtain the constant parity summation as-
sociated with that path.

To do so, we maintain a disjoint-set structure Di

for each locus graph Li and update it incrementally.
The disjoint-set structure is defined by a pair of val-
ues repi[v], offseti[v] for each node v in V (Li). We
use subscript i here to emphasize that the disjoint-set
structure Di is specific for each locus graph. repi[v]
indicates the node which acts as the representative
of the set containing v. And the offset of a node
offseti[v] indicates the summation of the constants
associated with the edge constraints on the path
from v to its repi. Namely, if repi[v] = v0, then
offseti[v] =

∑
exy∈Pṽ,v0

cxy
i , where Pṽ,v0 is the path

with end nodes v and v0, cxy
i is the constant associ-

ated with the edge constraint on edge exy (as speci-
fied in the last 3 cases of Table 1). Initially, for every
node in V : repi[v]← v, offseti[v]← 0. We examine
each exy ∈ Li and update Di by considering the edge
constraint px

i + py
i = hxy + cxy

i represented by exy.
If both p

repi[x]
i and p

repi[y]
i are pre-determined, we

report a path constraint and record it in D for con-
sistency check (see subsection 3.3). The two sets rep-
resented by repi[x] and repi[y] will always be merged
into one because they are connected by an edge exy

and we always let one pre-determined representative
be the representative of the new set if there is such
one. At the end, any two nodes connected by a path
in Li will be merged into one set and a set in Di only
consists of connected nodes in Li. By doing so, we
can safely detect all path constraints on Li. Further-
more, the constant associated with a path constraint
between two nodes vs and vt in the same set can be

reconstructed as
∑

exy∈Pṽs,vt
∈Li

cxy
i = offseti[s] + offseti[t].

The procedure is illustrated in Algorithm 3.1.

Algorithm 3.1 Unioni(x, y, cxy
i)

if both p
repi[x]
i and p

repi[y]
i are pre-determined then

Report a path constraint P from node repi[x] to repi[y]:∑
exy∈P hxy

i = c, where c = p
repi[x]
i +p

repi[y]
i +offseti[x]+

offseti[y] + cxy
i . Encode the constraint in D by applying

Union(repi [x], repi[y], c).
end if
if p

repi[y]
i is not pre-determined then

offseti[repi[y]]← offseti[y] + offseti[x] + cxy
i

repi[repi[y]]← repi[x]
else

offseti[repi[x]]← offseti[x] + offseti[y] + cxy
i

repi[repi[x]]← repi[y]
end if

We also need to capture all constraints that may
have not been processed yet in the above procedure
due to node splitting. This is easy for a tree pedigree
which only possibly has local cycles to split. There
are three possible types of constraints that need spe-
cial attentions due to node splitting, i.e., local cycle
constraints themselves, ps variables between dupli-
cated nodes and their corresponding splitting nodes,
and some path constraints originally existing in the
locus graph before splitting, but broken by splitting.
We can prove by case analysis that all these con-
straints can be safely recovered as path constraints
on locus graphs after node splitting. We leave the
proof in our extended journal version and we illus-
trate the cases using an example in Figure 4.

(a) (b) (c)

Fig. 4. This example illustrates all possible patterns of lo-
cus graphs of a nuclear family on a tree pedigree. (a) If nei-
ther of the parents is homozygous at this locus, then there
should be a loop constraint, h36 + h35 + h45 + h46 = c. Since
we split node 6, it is expressed as a path constraint on path
Pṽ6,v6′

. Since the locus graph is still connected, no path via

this nuclear family will be broken up due to the split of node
6. (b)(c) If one or both of the parents are homozygous at this
locus, then both of the children are pre-determined. In this
situation, path constraints such as Pṽ5,v6′

will only take the

children as end nodes such that they remain on a consecutive
path, unaffected by the split of node 6.

303

Figure 5 gives an example on how to detect con-
straints on a locus graph Li. In the actual imple-
mentation of a disjoint-set forest, a node may not
directly point to its set representative, we omit the
details (see Ref. 4, 13) here for clear demonstration
purpose.

(a) (b)

Fig. 5. An example shows the detection of all constraints
from a locus graph after node splitting. (a) Locus graph Li of
a pedigree with 8 nodes at a certain locus i. Shaded nodes are
pre-determined. (b) The disjoint-set forest formed by adding
edges 1-4, 4-5’, 3-5, 3-6 and 5-8 of the locus graph Li in (a).
No path constraint has been detected so far. We simply merge
the sets containing each pair of nodes. A pointer is annotated
with the offset of a node to its representative. If we further
process edge 4-6 of Li. Because both 4 and 6 have a represen-
tative with ps variable pre-determined, a path between the two
representatives (node 4 and 8) will induce a path constraint,
which is

∑
exy∈Pṽ4,v8

hxy = 0.

3.3. Encode path constraints in
disjoint-set structure D

Once we detect a path constraint, we encode this con-
straint also in a disjoint-set structure D. As usual,
D is defined by a pair of values rep[v] and offset[v]
for each node v ∈ V . rep[v] is a pointer to a node
and offset[v] ∈ {0, 1} is a constant. We maintain
this disjoint-set structure D such that any two nodes
k and l in the same set encode a path constraint in
the form of

∑
exy∈P

k̃,l
hxy = offset[k] + offset[l].

Initially, rep[v] ← v, offset[v] ← 0, for any v ∈ V .
When processing a path constraint

∑
exy∈P

ĩ,j
hxy =

c, we check whether the representatives of the two
end nodes i and j are the same. If they are not
the same, which means no constraints on h variables
between these two nodes have been discovered so
far, we merge the two sets represented by rep[i] and
rep[j] as illustrated in Algorithm 3.2. When rep[i]
and rep[j] are the same (a constraint already exists
before seeing the current constraint), we must check
the consistency and redundancy between the current

constraint and the previous constraint. This can be
easily done by comparing the constant c associated
with the new constraint and the constant associated
with the existing constraint offset[i] + offset[j]. If
the two constants are the same, the new constraint
is redundant and will be dropped; otherwise, incon-
sistency exists and the program reports no solutions
with zero recombinations and terminates. The pro-
cedure is summarized in Algorithm 3.2.

Algorithm 3.2 Union(i, j, c)
if rep[i] = rep[j] then

if offset[i] + offset[j]! = c then
Report inconsistency

end if
else

offset[rep[j]] ← offset[j] + offset[i] + c
rep[rep[j]] ← rep[i]

end if

After all path constraints have been processed,
the nodes will form several independent sets. A gen-
eral solution of h variables can be easily decoded
from D. More specifically, for each set representative
v of D, we define a free binary variable αv (notice αv

is not the same as ps variables). A general solution
of h variables can be represented by a linear system
of α variables (which are all free) in the form of

hxy = αrep[x] + offset[x] + αrep[y] + offset[y]. (2)

We can prove that such a solution satisfies all path
constraints. We can further argue that there are
no other h variable assignments that satisfy all path
constraints. We leave the proof in our extended jour-
nal version.

Next, let’s consider how to compute ps vari-
able solutions from h variable solutions. For each
node v in Di, v is connected to its set representa-
tive repi[v] through a path P on Li. We have pv

i +
p

repi[v]
i =

∑
exy∈P∈Li

(hxy + cxy
i) =

∑
exy∈P hxy +∑

exy∈P cxy
i =

∑
exy∈P hxy +offseti[v]. By plugging

in the solution of h variables in Equation 2, we will
finally get a general solution for the ZRHC problem,

pv
i = p

repi[v]
i + αrep[repi[v]] + offset[repi[v]]+

αrep[v] + offset[v] + offseti[v].
(3)

If p
repi[v]
i is not pre-determined, we have one more

degree of freedom in Equation 3.

304

3.4. Analysis of the algorithm on tree
pedigrees with complete data

The overall algorithm is summarized in Algorithm
3.3. We omit the preprocessing steps (such as node
splitting, construction of locus graphs) because all
those operations can be done in linear time. Here
we also state our main result of the algorithm as a
theorem. We leave the proof in the extended journal
version due to space limitation.

Algorithm 3.3 Process All Constraints
for i = 1 to m do

for all edge exy ∈ Li do
Unioni(x, y, cxy

i)
end for
for all splitting node v do

if repi[v] = repi[v
′] then

Union(v, v′, offseti[v] + offseti[v
′])

end if
end for

end for

Theorem 3.1. For a tree pedigree with complete
data, Algorithm 3.3 correctly outputs a general so-
lution (Equation 2 and 3) and the number of specific
solutions (degrees of freedom) for the ZRHC problem
if it has a solution, and reports inconsistency oth-
erwise. Its running time is bounded from above by
O(mnα(n)), where m is the number of loci, n is the
number of individual and α() is the inverse Acker-
mann function4.

4. EXTENSION TO GENERAL CASES

4.1. Pedigrees with mating loops

We can further extend the above algorithm to pedi-
grees with mating loops and pedigrees with missing
data. For a looped pedigree, we apply a similar split-
ting rule to locus graphs as we did for a tree pedi-
gree, except that for a mating between two relatives
all their children are duplicated in order to break
a global cycle. We use the same method described
in section 3.2 and 3.3 to detect all path constraints
on each locus graph. However, Theorem 3.1 does
not hold anymore in this case because the method
does not guarantee the detection of all necessary
constraints. The difference lies in the detection of
path constraints broken by splitting nodes. All such
path constraints can be recovered when breaking a
local cycle but may not be recovered when breaking
a global cycle. Figure 6 gives such an example on a
looped pedigree.

(a) (b) (c)

Fig. 6. An example of constraints on a looped pedigree. (a)
A pedigree with a mating loop, where node 6 is produced by
the mating of two relatives 4 and 5. (b) One locus graph
Li, where there is a path constraint

∑
exy∈Pṽ6,v6′

hxy =

h24 + h25 + h46 + h56 = 0. (c) Another locus graph Lj ,
where there is a constraint h46 +h56 = 0. Due to the splitting
at node 6, this constraint is not on a consecutive path.

Although the set of constraints are not sufficient,
we can still obtain all the solutions for a looped
pedigree using the following procedure. If there
are already inconsistent constraints during consis-
tency check, no solutions with zero recombinant ex-
ist. Otherwise, all the h variable solutions obtained
based on the general solution (Equation 2) will be
examined. If a specific h variable assignment is not
consistent with the genotype, we simply drop that
assignment. Otherwise, it will result in real hap-
lotype solutions. To check the consistency of an h

variable assignment with existing genotypes, we use
another disjoint-set structure to encode constraints
on alleles. This step is the same for pedigrees with
loops and pedigrees with missing data. Essentially
for looped pedigrees, we avoid cycle constraints by
splitting nodes with the expense that we may miss
some constraints. We start to enumerate h variables
after processing existing partial constraints. How-
ever, as it will be shown in the experiment, the num-
ber of all possible h variable assignments from this
set of partial constraints is usually very small for a
pedigree with complete data, and in most times there
is only one solution for pedigrees with 20 or more loci.
Therefore, the above extension can efficiently handle
looped pedigrees in practice.

4.2. Pedigrees with missing data

For an algorithm to be practically useful, it has to
be applicable on real data. Most real data contains
missing. One advantage of the proposed algorithm
is that it can be easily extended to deal with miss-
ing data. Extension of existing work3, 12, 15 to han-
dle missing is not trivial at all. We take a similar
approach as in subsection 4.1 to deal with missing

305

data. Partial constraints on h variables will be col-
lected based on existing genotype data. Solutions of
h variables will be obtained based on the set of par-
tial constraints and will be checked for consistency
with existing genotype data. More specifically, for a
pedigree with missing data, we construct the locus
graph Li for each locus i as usual with node split-
ting if necessary. The edges in Li will only be con-
structed by examining every parent-child pair whose
genotypes are complete at this locus i. We apply
Algorithm 3.3 to process all edge constraints from
such locus graphs. And from the partial constraints
on h variables, we get a solution in its general form
(Equation 2). The degree of freedom, which is nD−1
where nD is the number of independent sets, usually
is significantly smaller than the degree of freedom of
the original h variables without constraints, which
is usually close to 2n. Therefore, our algorithm has
the potential to be significantly faster than those al-
gorithms based on the enumeration of all possible h

variables (such as Merlin1).
For each specific h variable assignment, the com-

patibility check with the input genotype data is also
examined by utilizing another disjoint-set structure
on allele variables. For space limitations, we leave
the details in the extended journal version. By do-
ing so, we can efficiently check the consistency be-
tween a given h variable assignment and the input
genotype data, and generate a set of assignments of
alleles that are consistent with the h variable assign-
ment. The total number of h variable assignments
is 2nD−1, and for each assignment, the complexity of
genotype consistency check is O(mn · α(n)).

5. EXPERIMENTAL RESULTS

We study the performance of our program (denoted
as DSS) under different settings (pedigree size, num-
ber of loci, missing rate, pattern of missing) and com-
pare its performance with two representative pro-
grams Merlin1 and PedPhase (the integer linear pro-
gramming ILP algorithm in Ref. 9). Merlin is one
of the most widely used statistical packages for link-
age analysis and we only use its haplotyping func-
tionality in this comparison. It also uses the zero
recombinant assumption. But it examines all possi-
ble configurations of inheritance variables and only
outputs those compatible ones. PedPhase.ILP is an-

other widely used rule-based algorithm developed by
our own group. It can produce all optimal haplo-
type solutions with minimal recombinants for any
pedigree structures with missing data. It can solve
the zero recombinant problem as a special case. But
because it does not use the zero recombinant assump-
tion explicitly, its efficiency is expected to be inferior
to the current algorithm. Under the zero recombi-
nant assumption, all three methods are exact al-
gorithms that output all compatible solutions. Our
experiments show that their implementations indeed
generate the same set of haplotype assignments on
same inputs. This again shows that the ZRHC for-
mulation is valid for tightly linked markers, and the
set of solutions is the same as the set of solution ob-
tained based on likelihood approaches. Therefore,
we only present results on the efficiency comparison.

(a) (b)

(c)

Fig. 7. Pedigree structure used in simulation.

We test all three approaches on different sizes of
pedigrees (17, 29, 52, 128), all are real human pedi-
gree structures obtained from literatures. Different
number of loci (20, 50, 100, 200), different missing
rates (0.05, 0.10, 0.15, 0.20) and different missing
patterns are considered. We run Merlin and DSS on
a Linux machine with two 3.0GHz Quad-Core Xeon

306

(a)

(b)

Fig. 8. (a) Comparison of running time (in seconds). (b) Average number of solutions.

5365 processors and 16G memory. PedPhase.ILP
only has a Windows version, and it was tested on
a much slower Windows machine with a much small
memory (Pentium 4 3.2GHz with 2G memory). We
measure the time needed for each of the algorithms
to output all possible haplotyping solutions of a pedi-
gree. Due to hardware limitations, the result of Ped-
Phase.ILP on pedigree size 128 is not acquired. To
generate genotype data that closely resemble real
data, we use the Simulated Rheumatoid Arthritis
(RA) Data from Genetic Analysis Workshop (GAW)
15. Chromosome 6 of GAW data mimics a 300K
SNP chip with an average inter-marker spacing of
9,586 bp. The beginning 20, 50, 100 and 200 loci are
truncated to test the three algorithms. Population
haplotype frequencies are calculated based on the
true haplotype assignments in the simulated data,
and are then fed to SimPed7, together with each
pedigree structure. SimPed will then sample founder
haplotypes based on their population frequencies and
generate genotype data for each member in a pedi-
gree assuming no recombinations. The three pedi-
gree structures are shown in Figure 7, among which

the pedigree with size 17 (Figure 7(a)) is a looped
one. The pedigree with size 128 is too large to fit in
one page and will be provided on our website.

We designate two ways to generate samples with
missing data so as to examine the behavior of the
methods with respect to both missing rate and miss-
ing pattern variations. We generate the first set of
samples by randomly assigning a locus to be missing
at a specified missing rate. Second, we make all top
generation of a pedigree completely missing for all
loci, which is common in real data. For each testing
category, we simulate 100 independent data sets and
report the average running time. For the random
missing case, Figure 8(a) shows the running time of
the three programs under different settings, except
for the pedigree size 128, for which the running time
of Merlin is too large to be juxtaposed with DSS.
The result on the pedigree with size 128 is listed in
Table 2. The running time of Merlin increases expo-
nentially with the pedigree size, the number of loci
and also the missing rate. The running time of Ped-
Phase.ILP (on a slower machine) also has an expo-
nential growth with the increase of the missing rate

307

Table 2. Comparison of running time (in seconds) between DSS and Merlin on pedigree size 128. The run-
ning time of Merlin under some data settings exceeds an hour, and are thus omitted from our measurement.

number of loci 20 50

missing rate 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

DSS 0.0267 0.1539 0.3517 0.4991 0.6540 0.0259 0.0361 0.0368 0.0378 0.0360

Merlin 70 300 600 800 1100 360 800 1000 >1300 —–

number of loci 100 200

missing rate 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

DSS 0.0311 0.0426 0.0373 0.0431 0.0461 0.0433 0.0587 0.0518 0.0575 0.0503

Merlin 800 1200 >2400 —– —– —– —– —– —– —–

and the number of loci but with a smaller constant
compared to Merlin. It also shows a much smaller
growth rate with the pedigree size. In contrast, DSS
scales smoothly with all parameters (except for the
missing rate when the number of loci is 20), and the
improvement over Merlin or PedPhase.ILP is from
10 to 105 folds for large pedigrees with large number
of loci or high rate of missing. In fact, neither Merlin
nor PedPhase.ILP can successfully infer haplotypes
from the pedigree with size 128 when the number
of marker is 200. However, DSS can obtain all so-
lutions within 0.05 second, even for data with 20%
missing. This shows that by solving the linear sys-
tem based on partial constraints from existing data,
we significantly reduce the enumeration space of in-
heritance variables. The experimental results show
that when the number of loci is large, the program
can still maintain the same linear complexity even
for data with 20% missing. But for small number of
loci, the running time of DSS increases as missing
rate increases (though DSS can finish all the cases
within 0.1 second). This is because the number of
constraints on h variables is roughly in proportion
to the number of loci. So for small number of loci,
the remaining degrees of freedom on inheritance vari-
ables after solving the linear system could still be
high. This number could be partly reflected by the
number of all compatible solutions in the end. Figure
8(b) compares the number of h variable solutions in
different circumstances. It grows with both the pedi-
gree size and the missing rate, but decreases with the
number of loci.

Next, we investigate the performance of all three
algorithms on special missing patterns. Figure 9
gives some representative result on the pedigree with
size 52, for which all individuals at the top genera-
tion (members 4, 6, 8, 9) are missing. For this pedi-
gree, such missing equals a missing rate of ∼7.7%. In

terms of absolute time, DSS (0.2 ∼ 0.8 sec) is much
better than the other two algorithms (0.2 ∼ 100 sec).
However, the running time is higher than its own
running time with a missing rate 10%. The run-
ning time of Merlin and PedPhase.ILP on this spe-
cial data set is between those of missing rate 5% and
10%. DSS is somewhat sensitive to this special miss-
ing pattern because when all genotypes of an indi-
vidual are missing, none of the inheritance variables
between her and her parents or children could be
determined. A further investigation on this special
missing pattern is warranted.

Fig. 9. Comparison of DSS and Merlin on different patterns
of missing data.

6. DISCUSSION

We propose an algorithm for haplotype inference
from pedigree data without recombinant using
disjoint-set structures. The proposed algorithm can
output a general solution for a tree pedigree with
complete data in time O(mnα(n)), which is a further
improvement upon existing results. For a general
pedigree, or a pedigree with missing data, by using
the same framework, our method can significantly re-
duce degrees of freedom on inheritance variables and
thus narrow down the search scope. Experimental
results show that the algorithm is efficient in prac-
tice for both complete data and missing data, and
outperforms two popular algorithms on large data

308

sets. For data with large number of markers, the
performance of the algorithm hardly deteriorates as
the missing rate increases.

Though several theoretical results of ZRHC were
recently reported3, 12, 15, none of them have been im-
plemented. The empirical examination of the perfor-
mance of our algorithm offers some evidence for the
theoretical bounds on the complexity of such haplo-
typing approaches based on linear systems.

The performance of our algorithm on pedigrees
with missing data depends on the number of con-
straints the linear system can capture. We observe
that the efficiency of this linear system is influenced
by variation in missing patterns. So as a possible
piece of future work, we can consider a special strat-
egy to handle individuals with all loci missing. Other
possible directions are to combine the proposed al-
gorithm with statistical approach to assign a proba-
bility likelihood for each of the assignments, and to
design algorithms for whole chromosome by calling
the current algorithm as a subroutine. Theoretically,
it also remains open whether the linear time com-
plexity can be observed for a general pedigree with
complete data.

Acknowledgement

This research is supported by National Insti-
tutes of Health/National Library of Medicine grant
LM008991, and in part by National Institutes
of Health/National Center for Research Resources
grant RR03655. Support for generation of the
GAW15 simulated data was provided from NIH
grants 5RO1-HL049609-14, 1R01-AG021917-01A1,
the University of Minnesota, and the Minnesota Su-
percomputing Institute. We would also like to ac-
knowledge GAW grant R01 GM031575.

References

1. Abecasis GR, Wigginton JE. Handling marker-
marker linkage disequilibrium pedigree analysis with
clustered markers. Am. J. Hum. Genet 2005; 77:
754–767.

2. Bonizzoni P, Vedova GD, Dondi R, Li J. The haplo-
typing problem: an overview of computational mod-
els and solutions. J Comp Sci Tech 2003; 18(6):
675–88.

3. Chan MY, Chan W, Chin F, Fung S, Kao M. Linear-
Time Haplotype Inference on Pedigrees without Re-
combinations. Proc. of the 6th Annual Workshop on

Algorithms in Bioinformatics (WABI’06) 2006: 56–
67.

4. Cormen TH, Leiserson CE, Rivest RL, Stein C. In-
troduction to Algorithms. 2nd edition, McGraw-Hill
Book Company, Boston, MA. 2003: 498–517.

5. Gusfield D. An overview of combinatorial methods
for haplotype inference. Lecture Notes in Computer
Science (2983): Computational Methods for SNPs
and Haplotype Inference. 2004: 9–25.

6. Halldórsson BV, Bafna V, Edwards N, Lippert R,
Yooseph S, Istrail S. A survey of computational
methods for determining haplotypes. Lecture Notes
in Computer Science (2983): Computational Meth-
ods for SNPs and Haplotype Inference. 2004: 26–47.

7. Leal SM, Yan K, Müller-Myhsok B. SimPed: a simu-
lation program to generate haplotype and genotype
data for pedigree structures. Hum Hered 2005; 60:
119–122.

8. Li J, Jiang T. Efficient Inference of Haplotypes from
Genotype on a Pedigree. Journal of Bioinformatics
and Computational Biology(JBCB) 2003; 1(1): 41–
69.

9. Li J, Jiang T. Computing the Minimum Recom-
binant Haplotype Configuration from Incomplete
Genotype Data on a Pedigree by Integer Linear Pro-
gramming. Journal of Computational Biology 2005;
12: 719–739.

10. Li J, Jiang T. A survey on haplotyping algorithms
for tightly linked markers. Journal of Bioinformatics
and Computational Biology 2008; 6(1): 241–259.

11. Liu L, Chen X, Xiao J, Jiang T. Complexity and
approximation of the minimum recombination hap-
lotype configuration problem. In Proc. 16th Interna-
tional Symposium on Algorithms and Computation
(ISAAC’05) 2005: 370–379.

12. Liu L, Jiang T. Linear-Time Reconstruction of Zero-
Recombinant Mendelian Inheritance on Pedigrees
without Mating Loops. Proc. of Genome Informatics
Workshop (GIW’2007) 2007: 95–106.

13. Tarjan RE, Leeuwen J. Worst-case analysis of set
union algorithms. Journal of the ACM 1984; 31(2):
245–281.

14. The international HapMap Consortium. A second
generation human haplotype map of over 3.1 million
SNPs. Nature 2007; 449: 851–61.

15. Xiao J, Liu L, Xia L, Jiang T. Fast Elimination
of Redundant Linear Equations and Reconstruction
of Recombination-Free mendelian Inheritance on a
Pedigree. Proc. of 18th Annual ACM-SIAM Symopo-
sium on Discrete Algorithms (SODA’07) 2007: 655–
664.

16. Zhang K, Zhao H. A comparison of several methods
for haplotype frequency estimation and haplotype re-
construction for tightly linked markers from general
pedigrees. Genetic Epidemiology 2006; 30(5): 423–
437.

17. Zhang XS, Wang RS, Wu LY, Chen L. Models and
Algorithms for Haplotyping Problem. Current Bioin-
formatics 2006; 1(1): 105–114.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

