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Detecting non-coding RNAs (ncRNAs) in genomic DNA is an important part of annotation. However, the most
widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high computational cost when
used for search. This cost can be reduced by using a filter to exclude sequence that is unlikely to contain the ncRNA
of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient
filter that can detect nearly all ncRNA instances while excluding most irrelevant sequences remains challenging.

This work proposes a systematic procedure to convert a CM for an ncRNA family to a secondary structure
profile (SSP), which augments a conservation profile with secondary structure information but can still be efficiently
scanned against long sequences. We use dynamic programming to estimate an SSP’s sensitivity and FP rate, yielding
an efficient, fully automated filter design algorithm. Our experiments demonstrate that designed SSP filters can
achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families,
including those with and without strong sequence conservation. For highly structured ncRNA families, including
secondary structure conservation yields better performance than using primary sequence conservation alone.

1. INTRODUCTION

Non-coding RNAs (ncRNAs) are transcribed but are
not translated into protein. Annotating common
ncRNAs, such as tRNAs and microRNAs, as well as
non-coding structures like riboswitches in mRNAs,
is important because of their functions in many bi-
ological processes1. The function of an ncRNA is
determined not only by its sequence but also by its
secondary structure. Exploiting this structural sig-
nal can improve ncRNA homology detection2.

The state-of-the-art method to recognize an
ncRNA of known family is to align it to a covari-
ance model (CM). A CM is a stochastic context-
free grammar (profile SCFG)3, 4 that describes an
ncRNA family’s sequence and secondary structure
conservation. Aligning an RNA to a CM uses a
probabilistic variant of the well-known CYK parsing
algorithm5. CM alignment has been implemented in
the INFERNAL software suite2. In conjunction with
a database of CMs, such as Rfam6, INFERNAL can
be used to annotate ncRNAs in genomic DNA.

A major challenge of CM alignment is its high
computational cost. Probabilistic CYK is a cubic-
time algorithm with a significant constant factor.
For example, Weinberg et al. estimated that it would
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take about 1 CPU year to locate all tRNAs in an 8-
Gbase DNA database on a 2.8 GHz Intel Pentium
4 PC16. Although CPUs have gotten faster, and
INFERNAL implements optimizations designed to
lower the cost of CYK, speeding up CM alignment
remains a major problem for annotating large se-
quences or for classifying many sequences into one
of the many known ncRNA families.

One approach to accelerate CM alignment is to
use a filter to exclude “unpromising” sequences. Se-
quences that pass the filter have a higher probability
of containing the target ncRNA and so are aligned
with the full CM. Careful filter design can effectively
accelerate pairwise DNA sequence comparison8–11 as
well as alignment of a sequence to a profile hidden
Markov model (pHMM)12, 13.

Several filtering strategies have been proposed
to speed up CM search7, 14–18. Construction of the
Rfam database uses primary sequence comparison
with BLAST to exclude sequences unlikely to be part
of an ncRNA family6. Weinberg and Ruzzo devel-
oped a pHMM-based, lossless filtering strategy for
arbitrary ncRNA families7 as well as a faster but
lossy strategy that designs a pHMM from a CM for
a family15. A disadvantage of all these filters is that
they forgo the opportunity to exploit RNA struc-
tural conservation. Moreover, while pHMMs can be
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scanned against a database much more efficiently
than CMs, their computational cost remains an issue
for large database searches.

Other types of filter exploit RNA structural
conservation. Weinberg and Ruzzo used a sub-
CM structure 16 to improve the filtering sensitiv-
ity for ncRNA families with low sequence conserva-
tion. However, the filter design process is expen-
sive (1 to 50 CPU hours per family), and using the
resulting filters leads to a slow filtration process.
Zhang et al.17, 20 used the (k, w)-stack as the ba-
sis for their filter design. It is not clear whether
their method can be used to design filters for a
large database of ncRNA families because the au-
thors need to choose optimal filters empirically by
trying different parameters20. In addition, using
(k, w)-stacks may not be optimal for many families
with strong sequence conservation.

Recently, Zhang et al.18 designed a chain filter,
based on a collection of short matches to conserved
words in a CM, that can sensitively and efficiently
identify riboswitch elements. The chain filter does
not consider structural conservation either. More-
over, the design of such filters requires specifying
score thresholds for matches to the various words in
the filter. The procedure for selecting thresholds was
not described in Ref. 18, so the design of chain filters
appears less than fully automated.

In this work, we describe a robust, efficient ap-
proach to fully automated filter design for ncRNA
search. We show how to design filters starting
from a CM using secondary structure profiles (SSPs),
which recognize both primary sequence and sec-
ondary structure conservation. The main properties
of our filters and filter design program are:

• SSP matching is a simple extension of the stan-
dard profile matching algorithm and has linear
time complexity;

• Designing SSPs from CMs is efficient;
• SSP-based filters generalize to ncRNA families of

all types;
• The match score threshold for an SSP can be au-

tomatically computed from its CM, using a prac-
tically accurate model-based estimate of its speci-
ficity in background DNA sequence.

SSPs were first used in the ERPIN program19 to

characterize RNA signatures. They generalize pro-
files (a.k.a. position specific score matrices) by incor-
porating probability distributions for conserved base
pairs. The main difference between our data struc-
ture and ERPIN’s is that our SSP can accommodate
gaps inside stacks, such as bulges. Also, we use dif-
ferent methods for SSP design and scanning.

Our method constructs a list of candidate SSPs
from a given CM, then uses dynamic programming,
first to assign a threshold to each SSP to control
its false positive (FP) rate and then to estimate each
SSP’s sensitivity. The candidate SSP that maximizes
sensitivity subject to an upper bound on its FP rate
is chosen as the final filter. The sensitivity and FP
rate computed via dynamic programming are typi-
cally good predictors of a filter’s performance on real
sequences, so their computation allows us to fully au-
tomate selection of SSPs and their associated score
thresholds. We extend our filtering strategy to use
multiple SSPs to improve the trade-off between sen-
sitivity and FP rate.

Our results demonstrate that automatically de-
signed SSP filters have an average speedup of about
200x over INFERNAL 0.7 without filtration yet de-
tect almost all (≥ 99% of) occurrences of most
ncRNA families we tested. For highly structured
ncRNA families with limited sequence conservation,
such as tRNAs and 5S rRNA, we show that including
secondary structure conservation in an SSP yields a
better sensitivity/FP rate tradeoff than relying on
primary sequence conservation alone.

The remainder of this paper is organized as fol-
lows. Section 2 briefly reviews CMs and formally
defines SSPs. Section 3 describes how to construct
SSPs from a CM and how to evaluate an SSP’s per-
formance. In Section 4, we first demonstrate the ad-
vantages of using SSPs versus primary conservation
profiles on ncRNA families drawn from BRAliBase
III21. We then measure the sensitivity, FP rate, and
speedup obtained for 233 ncRNA families from the
Rfam database. We also compare SSPs with other
types of filter. Finally, Section 5 concludes and sug-
gests directions for future work.

2. CMS AND SSPS

This section briefly reviews CMs and formally defines
our secondary structure profiles (SSPs). To distin-
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Fig. 1. (A) ungapped alignment of RNAs with three con-
served base pairings; (B) corresponding secondary structure;
(C) CM describing the structure.

guish an SSP, which includes structural information,
from a profile that describes only the primary se-
quence conservation at a series of sequence positions,
we call the latter a regular profile hereafter.

2.1. Covariance models

A CM consists of a series of groups of states, which
are associated with base pairs and unpaired bases in
an RNA structure.

Figure 1 shows the structure of a simple CM
built from an RNA multiple sequence alignment an-
notated with three base-pair interactions. This CM
contains start state S, end state E, three states emit-
ting base pairs, and three states emitting unpaired
bases. Each state is associated with an emission dis-
tribution; for example, the top paired state emits
A-U and U-A pairs only. States are connected by
transitions with associated probabilities. All transi-
tions have probability 1 in the example, but inser-
tions and deletions in a structure can be modeled by
states with lower-probability in-transitions. The key
observations for our work are that (1) the emitting
states of a CM encode both primary sequence con-
servation and the locations of paired bases, and (2)
the transition probabilities between these states en-
code how often a given state is present in a randomly
chosen path through the CM.

More detailed descriptions of CMs and proba-
bilistic CYK can be found in Ref. 4.

2.2. Secondary structure profiles

SSPs augment regular profiles by characterizing base
pair frequencies in an RNA structure. Hence, unlike
a regular profile, we must tell an SSP which pairs of
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LLR score at position x = max of {LLR score 
under seed 1, LLR score under seed 2}

   LLR score under seed 1 = s(0,AA)+s(1,UC)+s(2,GA)+s(3,A)+s(4,G)
   LLR score under seed 2 = s(0,AU)+s(1,UA)+s(2,GC)+s(3,A)+s(4,G)

Fig. 2. (A) gapped alignment of RNAs with three base pair-
ing interactions, with a corresponding SSP. Two seeds handle
the possibility of an insertion after position 4. Column 0 may
pair with column 7 or 8, resulting in seed pairs (0, 7) and
(0, 8); (B) computation of LLR score at offset x in an input
sequence.

bases it inspects are expected to be complementary.
Figure 2(A) shows an example of an SSP.

An SSP P consists of two components. The first
component contains one or more seeds that desig-
nate paired and unpaired base positions. A seed π

of length � is an ordered list of � single or paired
values. A single value πi denotes that the ith base
relative to the start of the SSP is unpaired, while a
pair of values (π1

i , π2
i ), with π1

i < π2
i , indicates that

positions π1
i and π2

i are paired. To describe common
variations in the locations of paired bases caused by
insertion and deletion, an SSP may include multiple
seeds. Note that the set of positions described by a
seed need not be contiguous in the sequence.

The second component of an SSP describes emis-
sion distributions for bases or base pairs in the align-
ment. For example, the probability of A-U at off-
sets specified by the first element of both seeds is
P0,AU = 0.657. Note that all seeds have the same
length as the number of rows in the profile, since
each SSP has only one profile.

During search, an SSP P is aligned with a se-
quence S at each possible offset 0 ≤ x < |S|. The
hypothesis that the bases of S matched by some seed
π at offset x are generated from the emission dis-
tributions of P is compared to the null hypothesis
that the positions come from a background model
P0, using a log likelihood ratio (LLR). Starting at
any offset x in S, we extract bases of S using po-
sitions specified in a seed π. Define the concate-
nation of those bases as substr(S, x, π). For ex-
ample, the substring starting at x under the first
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seed in Figure 2(B) is AUGAGACA. Then the LLR
score for any substring starting at x under a seed
π is LLR(S, x, π) = log Pr(substr(S,x,π)|P)

Pr(substr(S,x,π)|P0) . The back-
ground model P0 has the same length as P , and each
base’s frequency is that observed in the database as
a whole. A base pair’s occurrence probability under
P0 is the product of two single bases’ probabilities.
If the LLR score exceeds a threshold T (to be deter-
mined), we declare a match to P at position x.

LLR(S, x, π) can be computed as the sum of LLR
scores of individual bases or pairs in substr(S, x, π).
For bases a and a′, let s(i, aa′) and s(i, a) be the
LLR scores of base pair aa′ or base a at the ith col-
umn of the SSP. For example, s(0, A-U) = log P0,AU

P0
0,AU

.

Figure 2(B) shows the computation of LLR scores
starting at x in S under two input seeds. Consider-
ing all the seeds π ∈ P and all the offsets 0 ≤ x < |S|,
we define the final LLR score between S and P as

LLR(S,P) = max
x,π

LLR(S, x, π).

3. DESIGNING SSPS FROM A CM

This section describes our algorithm to derive SSPs
from a CM. We begin by formally defining the prob-
lem. For an SSP filter P and associated threshold T

derived from a CM M, P ’s sensitivity to M is de-
fined as the probability that P matches a sequence
generated by M: PrS∼M(LLR(S,P) ≥ T ). The
false positive (FP) rate for P at threshold T is de-
fined as the probability of seeing an SSP match with
score ≥ T at a random position in a background se-
quence. Thus, the FP rate is PrS∼P0(LLR(S,P) ≥
T ), where background model P0 is the same as in
Section 2.2 and |P0| = |P|.

Many SSPs can be constructed from a CM. Our
objective is to choose an SSP with high sensitiv-
ity and specificity to its CM. We also wish to keep
the length of the designed SSP short to maximize
the efficiency of scanning it against a large sequence
database. The design problem is therefore as follows:

Given CM M and null model P0, construct an SSP
P of length at most Lmax and an associated thresh-
old T so as to maximize P’s sensitivity to M while
keeping its FP rate relative to P0 no larger than a
specified value τ .

The parameters Lmax and τ are supplied by the
user along with models M and P0, but threshold T

is derived automatically for each SSP.
We construct an SSP from a CM in two steps.

First, we identify gapless intervals in a CM, which
are likely to yield SSPs with few seeds, and extract
candidate SSPs from each such interval. Secondly,
we select a threshold for each candidate SSP to en-
sure its sensitivity with a bounded false positive rate,
then select the best SSP(s) to act as filter for the CM.

3.1. Selecting candidate SSPs

Although our SSPs can handle gaps caused by inser-
tions or deletions, variable-length gaps cause seeds
to proliferate and so slow down the search process
and increase the FP rate. We therefore design SSPs
only in gapless intervals of the CM, which are regions
without either deletions or more than two consecu-
tive insertions. For a given CM, we calculate the
length distributions of insertions and deletions start-
ing from each state via dynamic programming. If
an insertion state can generate more than two con-
tiguous random bases with high probability, we call
it a split point. Similarly, if a deletion state can be
hit with high probability, it forms a split point. The
positions between a pair of split points constitute a
gapless interval.

We extract SSPs from a gapless interval as fol-
lows. Let i be a position inside the interval. When
there is no base pairing, an SSP of length L ≤ Lmax

is constructed starting at i using the emission prob-
abilities of the match states associated with single
stranded bases i to j = i+L−1. The corresponding
seed is 0 ... L − 1. If positions x and y are paired,
with i ≤ x < y ≤ j, then (x, y) forms a base pair in
the SSP. That is, we keep only base pairs inside the
same gapless interval. Bases that pair with a base
outside the interval are treated as single-stranded.

When a base pair to be included in an SSP spans
a gap whose length is not fixed, the resulting SSP
contains multiple seeds, reflecting the different pos-
sible distances between the pair’s endpoints. While
the number of seeds can be exponential in the length
of interval spanned by the SSP, we generate many
fewer seeds in practice and could, if needed, arbi-
trarily limit the number of seeds generated.
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3.2. Choosing the best SSP

The gapless intervals in a CM may generate a large
number of candidate SSPs. For each candidate Pi,
we compute a threshold Ti to achieve an FP rate of
at most τ , then compute the candidate’s sensitivity
given this threshold. The candidate SSP with the
highest sensitivity is chosen as the final filter. More
precisely, we select a threshold Ti for each candidate
Pi (of length L) that satisfies the constraint

Pr
S∼P0 and |S|=L

(LLR (S,Pi) ≥ Ti) ≤ τ, (1)

then choose the candidate SSP Pi and associated Ti

that maximize

Pr
S∼Pi

(LLR (S,Pi) ≥ Ti) . (2)

We note that, although we wish to judge whether
a given SSP Pi will detect sequences drawn from a
CM M, we use the base distribution of the SSP it-
self, rather than that of the full CM, to estimate its
sensitivity. This estimate may be inaccurate in two
ways. On one hand, a path sampled from M might
omit the CM states corresponding to the SSP Pi, in
which case the corresponding sequence lacks the por-
tion that should match the SSP with a high score.
On the other hand, Pi might happen to match some
other portion of the CM with a high score. In theory,
neglecting these two events results in an inaccurate
estimate of the match probability.

Empirically, however, we find that the match
probability is well approximated even if the above
two events are ignored. For 117 ncRNA families
chosen at random from Rfam, we compared our sim-
plified sensitivity, computed via Eq. (2), to sensi-
tivity as measured on a large set of Monte Carlo
samples from the family’s CM. The simplified and
Monte Carlo estimates were highly correlated (R2 =
0.9901), as desired. A detailed comparison of the two
estimates is given in our supplementary dataa.

3.2.1. Computing sensitivity and FP rate

In our previous work13, we developed a dynamic pro-
gramming algorithm to compute the sensitivity and
FP rate for a regular profile constructed from a pro-
file HMM. In this work, we extend that algorithm to

ahttp://www.cse.wustl.edu/∼yanni/ncRNA

apply to an SSP constructed from a CM, which may
include secondary structure conservation as well.

Following the definition of sensitivity in
Eq. (2), we compute the sensitivity of an SSP P ,
PrS∼P(LLR (S,P) ≥ T ) as follows:

Pr
S∼P

(LLR (S,P) ≥ T ) =
A∗∑

θ=T

Pr
S∼P

(LLR (S,P) = θ),

where A∗ is the highest possible LLR score for a
sequence produced by P . Let P1..j be a sub-SSP
consisting of the first j values in a seed and the
corresponding emission profile columns (unpaired or
paired) for P . The sensitivity in Eq. (2) is given by∑A∗

θ=T Pr(|P|, θ), where |P| is the SSP’s length.
For convenience below, let Pr (�, θ) denote the

probability PrS∼P1..�
(LLR (S,P1..�) = θ). Let Pi,a

be the emission probability of unpaired base a at col-
umn i. Similarly, let Pi,a1a2 be the emission probabil-
ity of base pair a1a2 at column i. Two dynamic pro-
gramming cases are needed, depending on whether
column � describes an unpaired base or a base pair.

When column � describes the frequency distri-
bution of an unpaired base,

Pr(�, θ) =
∑
a∈Σ

P�,a Pr
(

� − 1, θ − log
P�,a

P0
a

)
,

where P0
a is the probability of the residue a in the

background model P0. When column � describes the
frequency distribution of a base pair,

Pr(�, θ) =
∑

a1a2∈Σ2

P�,a1a2 Pr
(

� − 1, θ − log
P�,a1a2

P0
a1
P0

a2

)
.

Initially, for each base a ∈ Σ or a1a2 ∈ Σ2,
Pr(1, log P1,a

P0
a

) = P1,a if column 1 is created from

an unpaired base, or Pr(1, log P1,a1a2
P0

a1
P0

a2
) = P1,a1a2 if it

is created from base pair.
If we let S be sampled from P0 rather than from

P , the above algorithm can be modified to compute
the FP rate against P0. The FP rate for P is

Pr
S∼P0

(LLR (S,P) ≥ T ) =
A∗∑

θ=T

Pr
S∼P0

(LLR (S,P) = θ).

For a given FP threshold τ , the score threshold T

chosen for P is computed as

T = argminT ′

(
A∗∑

θ=T ′
Pr

S∼P0
(LLR (S,P) = θ) ≤ τ

)
.
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Let smax be the maximum possible LLR score for
a single position of the SSP (one base or base pair).
Similarly, let smin be the minimum such score. The
time complexity of our dynamic programming algo-
rithm is Θ(|Σ|L2(smax − smin)). Because only short
intervals (we set Lmax = 25) are used to produce
SSPs, the range of possible scores, and hence the run-
ning time, is limited. It typically takes only seconds
to compute an SSP’s score threshold and sensitivity.

3.3. Using SSPs vs. regular profiles

For many ncRNA families, particularly those with
high primary sequence conservation, filtering with a
regular profile produces fewer false positives than us-
ing an SSP. Regular profiles generally look at shorter
intervals of the sequence than equally sensitive SSPs
because the latter often need to span long loops to
“see” significant stems whose two sides are widely
separated in the primary sequence. Long loops tend
to have variable length, so the SSP needs more dis-
tinct seeds to encode the range of possible loop
lengths and hence has a higher chance of match-
ing unrelated sequences purely by chance. On the
other hand, for some ncRNA families with low pri-
mary conservation, the secondary structure encoded
by SSPs may be the only available evidence on which
to base a filter.

To best exploit both primary and secondary con-
servation, our filter design procedure selects between
an SSP and a regular profile for each RNA family.
When designing a filter for a family, we first design a
regular profile without secondary structure informa-
tion. If this regular profile achieves sensitivity ≤ 0.9
to sequences from the CM according to our dynamic
programming estimate, we instead design a full SSP
for the family allowing base pairing. This approach
applies the extra complexity of secondary structure
filtering only where it is clearly needed.

3.4. Using multiple SSPs to improve
sensitivity

A sensitive SSP is usually constructed from a well-
conserved region within a CM. When multiple such
regions exist in one CM, we can improve overall
search sensitivity by designing a filter that is a union
of SSPs from all well-conserved regions. For a query

sequence S and a filter Φ that contains m SSPs
P1, ...,Pm, Φ matches S iff at least one component
Pi ∈ Φ matches S. The total FP rate for Φ is at
worst the sum of rates for its component filters Pi.

Our SSP design algorithm can be extended to
multiple SSPs. Instead of choosing the single SSP
with the highest sensitivity under a specified FP
rate threshold, we choose the top m non-overlapping
SSPs by estimated sensitivity. When two SSPs over-
lap, only the one with higher sensitivity is kept.

4. RESULTS

In this section, we first show that SSPs with sec-
ondary structure conservation exhibit a better empir-
ical sensitivity/false positive rate tradeoff than reg-
ular profiles for detecting structured ncRNA fami-
lies, such as tRNA and 5S rRNA, in the BRAliBase
III benchmark database21. We then apply our au-
tomated filter design methods to a large number of
ncRNA families from the Rfam database and quan-
tify the resulting filters’ sensitivity, FP rate, speedup
when used in search, and their dependence on sec-
ondary structural conservation. We also compare
SSPs and other filter types from related work. Fi-
nally, we investigate a small set of Rfam families on
which our designed filters exhibit low sensitivity.

4.1. SSP utility for structured RNAs

To demonstrate and quantify SSPs’ ability to ex-
ploit secondary structure, we first tested our heuris-
tics on BRAliBase III21, a database containing 602
5S rRNAs, 1114 tRNAs, and 235 U5 spliceosomal
RNAs. BRAliBase III has been used as a benchmark
for comparing ncRNA detection tools, including IN-
FERNAL 0.7. We compared SSPs to regular profiles
with no secondary structural information. We also
tested a restricted form of SSP that was permitted
only a single seed and so fixed the separation of all
base pairs. Single-seed SSPs were tested to quantify
the importance of handling variable-length gaps as
part of SSP filter design.

We used the same methods as Ref. 21 to eval-
uate the sensitivity and FP rate of SSPs. A total
of 40 sequence sets were sampled from each of the
three ncRNA types; each tRNA set contained 60 se-
quences, while each rRNA and U5 set contained 20
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Fig. 3. Performance comparison for three types of filter de-
signed for CMs built from tRNAs from BRAliBase III. Each
CM was built from 60 sequences with pairwise identities be-
tween 0 and 0.6.

sequences. Sets were chosen so that no two sequences
in a set aligned with greater than 60% identity. Each
sampled set was used to train a CM. We designed
heuristic filters from each CM, then tested the sen-
sitivity of each filter on all sequences of the corre-
sponding type in the database (e.g. 1114 tRNAs for
tRNA-derived filters). For a CM M, let HM be the
test set for M, and let SP

HM be the subset of se-
quences in HM which contain a match to filter P .
P ’s sensitivity is defined as |SP

HM |/|HM|. FP rate
was measured, as in Ref. 21, on a shuffled version of
the test set that was ten-fold larger than the original.
We note that we tested only the filters, rather than
the underlying CMs, because experiments in Ref. 21
showed that CM search is already highly sensitive
and specific for this database; hence, few if any true
positives from a filter would be discarded by the CM,
and nearly all false positives would be discarded.

Figures 3, 4, and 5 plot the sensitivities and
FP rates of 40 designed regular profiles, SSPs, and
single-seed SSPs for tRNA, 5S rRNA, and U5 spliceo-
somal RNA. Using SSP filters for tRNAs and 5S
rRNAs consistently boosted sensitivity compared to
regular profiles while reducing FP rate. Improve-
ments for U5 RNAs were more uneven. Using multi-
ple seeds in the SSP consistently improved sensitivity
relative to single-seed SSPs, usually from < 0.95 to
0.98-0.99, at a cost to FP rate. Overall, incorpo-
rating secondary structure in our filter significantly
improved its performance on these RNA families.

Variations in improvement observed with SSPs
vs. regular profiles across these families can be ex-
plained by looking more closely at their conserva-
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Fig. 4. Performance comparison for three types of filter de-
signed for CMs built from 5S rRNAs from BRAliBase III.
Each CM was built from 20 sequences with pairwise identities
between 0.4 and 0.6.
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Fig. 5. Performance comparison for three types of filter de-
signed for CMs built from U5 RNAs from BRAliBase III. Each
CM was built from 20 sequences with pairwise identities be-
tween 0.4 and 0.6.

tion. The average sequence lengths for tRNAs, 5S
rRNAs, and U5 RNAs are respectively 73, 117, and
119 bases, while the average number of annotated
base pairs in their training sets are 21, 18, and 4.
SSPs performed best on the tRNAs, which exhibit
the highest density of base pairing, and worst on the
U5 RNAs, with by far lowest such density.

4.2. Evaluation on Rfam database

In order to test our filter design methods on diverse
ncRNA families with a wide range of sequence con-
servation levels, we applied the methods to families
from the Rfam ncRNA databaseb. The filters in
these tests came from our fully automated design
pipeline, including automatic selection between reg-
ular profiles and SSPs as described in Section 3.3,

bhttp://www.sanger.ac.uk/Software/Rfam/
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and automatic determination of score thresholds for
each filter to achieve a uniform target FP rate.

We obtained Rfam release 8.0, which contains
574 non-coding RNA families. For each ncRNA fam-
ily, Rfam provides a hand-curated seed alignment, as
well as a full alignment produced by generating a CM
from the seed alignment, then scanning for matches
to that CM in EMBL’s RFAMSEQ DNA sequence
database. We selected for testing those ncRNA fam-
ilies with at least five sequences in the seed alignment
(used to train the CM and hence our filters) and ten
sequences in the full alignment (used to quantify sen-
sitivity below). These criteria reduced our test set to
233 ncRNA families.

Empirical sensitivity of a filter was measured as
the fraction of sequences in the full alignment that it
matched. To measure a filter’s empirical FP rate, we
used the filter to scan 65 Mbases of sequence sam-
pled from RFAMSEQ, using a simple scanning tool
written in C++. In actual application, whenever a
filter matched a locus in RFAMSEQ, the sequence
surrounding that locus would be scanned using the
full CM for the family. The filter’s FP rate was there-
fore computed, following Ref. 18, as the ratio of the
total length of sequences selected for scanning by the
CM to the total length of the database.

More precisely, let P be the filter designed for
CM M. Let the average length of the sequences
matched by M be L, and suppose that P matches
the database D at m distinct positions. Then each
match to P results in applying the CM to a region
of length L around the match. P ’s FP rate vs. data
set D was therefore estimated as (m × 2 × L)/|D|,
where |D| is the total length of D. For an CM M in
INFERNAL, L is the mean length of a match to M.

Our filter designs used a theoretical FP rate up-
per bound of τ = 5×10−6 and allowed multiple SSPs
or profiles per family. As discussed in Section 3.3, we
prefer to use regular profiles to SSPs when our the-
oretical estimate of sensitivity suggests that a reg-
ular profile would detect nearly all instances of an
ncRNA family. Of the 233 ncRNA families tested,
our methods produced regular profiles with theoret-
ical sensitivity at least 0.9 for 220; for the remain-
ing 13 families, we used SSPs to capture secondary
structure information as well.
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Fig. 6. Empirical sensitivities of filters for 233 ncRNA fam-
ilies from Rfam, measured on sequences in each family’s full
alignment.
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Fig. 7. Empirical FP rates of filters with sensitivity ≥ 0.99
for 196 ncRNA families from Rfam, measured on 65 Mbases
of genomic sequence from RFAMSEQ.

4.2.1. Sensitivity and FP rate

Figure 6 shows the sensitivities for our designed fil-
ters. Of the 233 filters designed, 196 (84%) had em-
pirical sensitivity ≥ 0.99. For these ncRNA families,
the average number of sequences in the test set is 321.
Only 3 filters (1.3%) had sensitivity less than 0.9. For
the 196 filters, Figure 7 shows their empirical false
positive rates on our 65-Mbase test database. The
average FP rate observed was 0.008.

We note that the observed FP rate is several or-
ders of magnitude greater than our theoretical FP
rate τ . This is because τ measures the filter match
probability at a random position in a database.
Thus, for a sequence database D, the expected num-
ber of matches is |D| × τ , and the empirical FP rate
is (|D| × τ × 2L)/|D| = τ × 2L. L is on the order of
hundreds for typical ncRNA-family CMs, so the ob-
served FP rate is expected to be of the order shown
in Figure 7 given our choice of τ .
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Fig. 8. Speedup distribution for 88 randomly chosen ncRNA
families using filters composed of at most four profiles or SSPs.

4.2.2. Acceleration ability

The key reason to place a filter in front of CM search
is the efficiency of filtration compared to CM scan-
ning. The average time (over 233 ncRNA families)
to scan a family’s CM against one Mbase of genomic
DNA using INFERNAL’s cmsearch tool was about
8701 seconds; in contrast, the average time to scan
the same length with one of our filters was only 0.67
seconds. In this section, we first analyze the relation-
ship between FP rate and observed speedup, then
show the empirical speedups obtained by our filters.

Let To be the time to run cmsearch -noalign

against a database D. Let Ts be the time to scan
a filter against database D, and let SP

D be the set
of matched substrings output by the filter. We es-
timate the time Tf to scan a database with filter-
ing enabled as Tf = Ts + (|SP

D|/|D|) × To, where
|SP

D|/|D| is the FP rate of the filter. The speedup of
filtered over unfiltered search is then To/Tf . To save
time, we estimated the times Ts and To for our 65-
Mbase RFAMSEQ sample from times measured on a
1-Mbase synthetic DNA sequence, since the cost of
the filtration and CM scanning algorithms is insen-
sitive to the actual sequence content. However, we
used accurate empirical estimates of |SP

D| from our
FP rate measurements of the previous section.

Figure 8 shows estimated speedups for 88
ncRNA families sampled at random from our set of
233. The average speedup for these families is 222x.

To validate our speedup estimates, we directly
measured speedup on our 65-Mbase database for
three ncRNA families, whose filters had FP rates
ranging from 0.003 to 0.012. Table 1 gives both the

Table 1. Estimated vs. observed speedups with fil-
tration for 3 ncRNA families.

Rfam To (s) Tf (s) Est. Obs.

ID speedup speedup

RF00476 149502 1631 79 91
RF00490 131625 354 281 371
RF00167 262475 1217 149 215

estimated and observed speedups for these three fam-
ilies. These observations suggest that our estimates
actually underestimate the speedup conferred by fil-
tration. The reason is that (|SP

D|/|D|) × To empiri-
cally overestimates the cost of running cmsearch on
the sequences emitted by the filter (data not shown).
Consequently, the results shown in Figure 8 are con-
servative estimates of the actual speedups obtained
by filtration.

4.3. Comparison with other filters

In this section, we compare our filters to two related
works on filtered ncRNA search. Our first compar-
ison is to Zhang et al.’s chain filters (CFs)18, which
were tested on a set of twelve riboswitch sub-families.
We designed ten sets of regular profiles and two sets
of SSPs for these sub-families. The results of our
comparison are given in Table 2; the false positive
rates shown are measured on the same synthetic
data set described in Ref. 18. The average sensi-
tivities observed for CFs and our filters were respec-
tively 0.998 and 0.993, and the corresponding FP
rates were 0.0353 and 0.0106. Overall, our automat-
ically designed filters exhibited similar performance
to CFs, which in Ref. 18 required manual interven-
tion to choose numerical cut-offs for each filter.

Our second comparison is to the profile HMM-
based filters of Ref. 15. The performance of HMM-
based filters was tested using cmsearch in INFER-
NAL with option -hmmfilter. We compared our
methods with HMM-based filters on two datasets:
BRAliBase III, and 88 randomly selected ncRNA
families from Rfam 8.0. Table 3 presents the me-
dian sensitivity and FP rates for the three types of
ncRNA families in BRAliBase III. According to these
experiments, the sensitivity of the two filter types is
comparable, and the FP rate of HMM-based filters
is smaller than that of SSP-based filters. However,
because searching for HMM matches is much more
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Table 2. Comparison of SSPs and chain fil-
ters (CFs) on 12 riboswitch sub-families.

Rfam CF CF SSP SSP
ID sen FP sen FP

RF00050 1 0.013 0.993 0.0034
RF00059 1 0.063 0.994 0.02314
RF00080 1 0.15 0.990 0.0043
RF00162 1 0.018 1 0.0038
RF00167 0.99 0.038 0.991 0.0034
RF00168 0.99 0.015 0.986 0.0046
RF00174 1 0.063 0.995 0.0052
RF00234 1 0.013 1 0.0118
RF00379 1 0.012 1 0.0024
RF00380 1 0.012 1 0.0030
RF00442 1 0.0017 1 0.0020
RF00504 1 0.025 0.967 0.0598

Table 3. Comparison of SSPs and HMM filters.

Name SSP HMM SSP HMM
sensitivity sensitivity FP rate FP rate
median median median median

tRNA 0.979 0.983 0.013 0.002
rRNA 0.998 1 0.012 0.0
U5 0.991 0.972 0.020 0.0

expensive than searching for profile matches, SSP-
based filters yield better speedup. Figure 9 quanti-
fies the advantage of SSP-based filters in the form of
box plots describing the distribution of speedups for
ncRNA families tRNA, rRNA, and U5 in BRAliBase.

In order to compare SSPs and HMM-based fil-
ters in a larger dataset, we then tested the sensi-
tivity, FP rate, and actual search time using these
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Fig. 9. Speedup comparison between HMM- and SSP-based
filters for tRNA, rRNA, and U5 in BRAliBase III database.
X-axis shows the names of ncRNA families and the used filters.
Y-axis measures speedups.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 11 21 31 41 51 61 71 81

ncRNA family index

lo
g(

ac
tu

al
 s

ea
rc

h 
tim

e 
(s

))

HMM-based filter

SSP-based filter

Fig. 10. Speed comparison between HMM- and SSP-based
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two types of filters on 88 randomly chosen ncRNA
families from Rfam. The experimental setting was
as in Section 4.2. The actual search time compari-
son is summarized in Figure 10. As we can see, IN-
FERNAL runs significantly faster using SSP-based
filters than using HMM-based filters for most of
the tested ncRNA families. The HMM-based filter
proved faster for only 7 out of 88 families, for which
the SSP filter exhibited a high FP rate (around 0.02).
According to our experimental results on over 200
ncRNA families in Section 4.2, the average FP rate
of SSP-based filters is 0.008, which is small enough
to ensure a better acceleration ability for a majority
of SSP-based filters.

4.4. Analysis of low-sensitivity SSPs

For 35 of the 233 Rfam ncRNA families tested, our
filters’ empirical sensitivity was < 0.99. We divide
these filters into two groups: those for which our
theoretical estimates accurately predicted their low
sensitivity (difference from empirical < 0.05), and
those for which we predicted sensitivity ≥ 0.99, but
the empirical result was < 0.95. Our supplementary
data gives examples of RNA families in both groups.

All but nine of the 35 “bad” families fall into the
first category; while these cases illustrate limitations
of our filtering heuristic, we can detect them during
design and opt to use a less aggressive filter or no
filter at all, depending on the user’s tolerance for
missed ncRNA occurrences.

For the remaining nine bad families, the high
theoretical but low empirical sensitivity of their fil-
ters would result in unexpected loss of matches to the
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CM. We therefore investigated these failures more
closely. Because the CMs used to design our filters
are trained only on seed alignments, filter quality de-
pends heavily on whether a family’s seed alignment
accurately reflects the range of variation in its full
alignment. A close look at one bad family, RF00266,
reveals that the full alignment contains much shorter
sequences than those in the seed alignment, with long
deletions that are not described by the CM. As a re-
sult, SSPs constructed from the CM do not attempt
to avoid these deletions. For three other families, the
full alignment has much lower primary conservation
than the seed alignment; hence, high predicted sensi-
tivity on the CM’s output is misleading as a predictor
of empirical sensitivity. For a further three ncRNA
families, low empirical sensitivity was an artifact of
the family’s small test set. For example, the filter for
family RF00002 missed only one of 15 sequences in
its test set, but this yielded empirical sensitivity of
only 0.93.

In the above seven cases, the apparent “badness”
appears to be either an artifact of a small test set or a
limitation in how representative the seed alignment is
of the full family. There are only two cases (RF00008
and RF00013) where we cannot yet explain the dis-
crepancies between the theoretical and experimental
sensitivities.

5. CONCLUSIONS

Covariance models are a state-of-the-art method to
identify and annotate non-coding RNAs. However,
their high computational cost impedes their use with
large sequence databases. Our automatically de-
signed SSP filters encode both primary sequence and
(optionally) secondary structure conservation in an
ncRNA family, yet they can scan a large sequence
database efficiently. 84% of our designed filters have
sensitivity at least 0.99, and their average FP rate is
0.008. Our filters obtain an average speedup of 222x
over search using CMs alone on Rfam.

There is considerable room to improve the sen-
sitivity and design efficiency of SSP filters. We plan
to study more systematic methods to choose a set
of SSPs so as to maximize their combined sensitiv-
ity. We also plan to design chain filters using SSPs
as components. The lengths of the component SSPs
can be shorter than the typical lengths of the filters

in this work because all or most must match to yield
a chain filter match. We expect that collections of
short filters would be most effective for ncRNA fami-
lies whose alignment contains frequent gaps, prevent-
ing the appearance of long gapless intervals.
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