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We have developed a feedback algorithm for protein structure alignment between two protein backbones. A web

portal implementing this method has been constructed and is freely available for use at http://fpsa.cs.uno.edu/ with

a mirror site at http://fpsa.cs.panam.edu/FPSA/. We compare our algorithm with three other, commonly used
methods: CE, DaliLite and SSM. The results show that in most cases our algorithm outputs a larger number of

aligned positions when the (Cα) RMSD is comparable. Also, in many cases where the number of aligned positions is

larger or comparable, our learning method is able to achieve a smaller (Cα) RMSD than the other methods tested.
This trend of larger number of aligned positions and smaller (Cα) RMSD is observed more frequently in cases where

the similarity between protein structures is weak.

1. INTRODUCTION

Protein structure alignment attempts to compare
the structural similarity between protein backbone
chains. A protein molecule can have one or more
protein chains, and each chain consists of a series
of amino acid residues connected by peptide bonds.
Protein structural similarity can be used to infer
evolutionary relationships, or in classifying protein
structures into more generalized groups. Typically,
in protein structure comparison process, each protein
chain is represented by an ordered set of 3-D points
where each point corresponds to an alpha-carbon
(Cα) atom in an amino acid residue. To compare the
structural similarity between these “backbone” rep-
resentations, a protein structure alignment algorithm

seeks an optimal transformation by which chains are
matched as closely as possible. An alignment is char-
acterized by (1) how many positions are matched, (2)
where these positions are, and (3) how well they are
matched. (1) and (2) are available once an alignment
is determined. For (3), a transformation based align-
ment algorithm usually calculates (Cα) RMSD, the
root mean square distance between aligned positions.

The alignment problem is non-trivial – in fact,
the problem of finding the optimal global alignment
between protein structures has been shown to be NP-
hard 12, 6. Therefore, there have been a number of
protein structure alignment algorithms presented in
the past years (e.g. Refs. 1, 3, 4, 7, 8, 9, 11, 13,
14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25), among
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them: DALI 7 (distance matrix based method), SSM
11 (secondary structure matching), CE 16 (the com-
binatorial extension method), and FATCAT 21 (pro-
tein structure alignment based on flexible transfor-
mation) are commonly used. We have developed
a feedback algorithm for pairwise protein structure
alignment and our web alignment tool is available
for public access. Our algorithm is named SLIPSA,
which stands for Self Learning and Improving Pro-
tein Structure Alignment. SLIPSA is self learning in
that it has a feedback loop which sends the current
alignment result back to its input in order to learn a
better result in the next stage. In addition, SLIPSA
accepts any reasonable upper-bound (Cα) RMSD

value as one of the inputs, and outputs an align-
ment result with an (Cα) RMSD never greater than
that value. Like CE, DALI and SSM, the SLIPSA
alignment method is based on rigid body transfor-
mation, as opposed to flexible transformation-based
algorithms such as the one described in Ref. 21.

Our paper is organized as follows: section 2
presents the SLIPSA algorithm; section 3 describes
the framework and procedures used in SLIPSA; sec-
tion 4 reports the experimental results of SLIPSA
and compares it with some well known algorithms
such as CE, DaliLite (the pairwise version of DALI),
and SSM, each of them having a public website; sec-
tion 4.3 discusses the results and concludes the pa-
per.

2. SLIPSA: AN ALGORITHM WITH
FEEDBACK

SLIPSA can be traced to a preliminary algorithm
that we reported previously in Ref. 25, but the for-
mer has proceeded far beyond the latter in terms of
maturity, stability, efficiency and availability. The
SLIPSA algorithm first searches all the locally simi-
lar sub-chain pairs from two protein backbone chains.
Such sub-chain pairs are called local alignments.
Next, consistent local alignments are grouped into
global alignment candidates called “double-center
stars” and a currently optimal global alignment is
chosen from all the candidates. Then this output
is sent back to its own input in order to learn from
itself. We call this a feedback. Such feedback is re-
peated to obtain improved results, until finally an
optimal alignment (i.e. a result with as many as

possible aligned Cα pairs and an acceptable (Cα)
RMSD). SLIPSA can also learn from other algo-
rithms when they are available.
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Fig. 1. Local alignment L=(i, j, l)

2.1. General Algorithmic Concepts

As shown in Figure 1, local alignments are discovered
by checking the distance difference between corre-
sponding Cα pairs. A local alignment L = (i, j, l)
is defined as the longest consecutive stretch of Cα

pairs starting from position i in protein backbone
chain S = p1 · · · pn and position j in backbone
chain S′ = q1 · · · qm and having length l, such that
|d(pi+u, pi+v)−d(qj+u, qj+v)| ≤ 2ε for any 0 ≤ u, v ≤
l − 1 and u 6= v, where d(p, q) is the Euclidean dis-
tance between two 3-D points p and q, and ε is a
small constant. A local alignment has to be long
enough to make sense.

After local alignments are discovered, they
are organized into groups. Ideally, only con-
sistent local alignments should be added to the
same group. Suppose there are two local align-
ments L1 = (i1, j1, l1) and L2 = (i2, j2, l2), the
point set P = {pi1 , · · · , pi1+l1−1, pi2 , · · · , pi2+l2−1}
is all the aligned points in the first chain,
including those in L1 and L2, and Q =
{qj1 , · · · , qj1+l1−1, qj2 , · · · , qj2+l2−1} is all the
aligned points in the second chain, also including
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those in L1 and L2. We say that local alignments L1

and L2 are consistent if, after applying a rigid body
transformation to Q, the (Cα) RMSD between P

and transformed Q is small enough. In other words,
if we have a set of local alignments, we conclude
that all these local alignments are consistent if all
the local alignments share a common rigid body
transformation which makes them consistent with
each other. Therefore a global alignment can be
defined as such a set of consistent local alignments
with a common transformation and an acceptable
(Cα) RMSD.

L1

L2

L3

L4

L5

L6

Star example: star 5Graph G=(V,E)

Clique 1 Clique 2

L1

L2

L3

L4

L6

L5

Fig. 2. An example star

The consistency relationship between local align-
ments can be represented as a graph. Given AL =
{L1, L2, · · · , Lw} where each Lu = (iu, ju, lu) (1 ≤
u ≤ w) is a local alignment. A graph G = (V,E) is
defined accordingly, where each local alignment is a
vertex of the graph, V = AL is the vertex set and
E is the edge set. Edge euv, evu ∈ E if and only
if Lu and Lv are consistent. With this representa-
tion, grouping mutually consistent local alignments
is equivalent to finding cliques in a graph, which
is an NP-complete problem. A possible simplifica-
tion to this problem is to look for “stars” rather
than cliques in a graph. A star is a set of ver-
tices including a center and all the other vertices
that are connected to the center vertex. Since any
clique must be included in some star, for our partic-
ular problem this simplification will not miss useful
vertices. Figure 2 shows a graph, two cliques and
an example star. There are 6 stars in the graph
since |V |=6. They are Star1 = Star2 = Star6 =
{L1, L2, L5, L6}, Star3 = Star4 = {L3, L4, L5} and
Star5 = {L1, L2, L3, L4, L5, L6}. A set of all the
unique stars is Stars = {Star1, Star3, Star5}. Note
that each star is finally a set of local alignments and

each local alignment is a set of Cα pairs.
For each unique star, a corresponding global

alignment candidate is calculated by deleting badly
aligned Cα pairs involved in that star. Then all
the candidates are compared and the optimal one is
chosen. An example global alignment between pro-
tein chains 1ATP:E and 1PHK is shown in Figure 3,
where Nmat is the number of aligned Cα pairs, (Cα)
RMSD is the root mean square distance between
the aligned pairs, and the rigid body transformation
used to align the two chains is T (the translation
vector) and R (the rotation matrix).

The “star” approach has been used in a prelimi-
nary version of this algorithm 25, which has one cen-
ter for each of its stars and shows some instability
for aligning large proteins. We introduce the double-
center method to group the local alignments and it
is described in section 2.2. This greatly improves
the reliability of the algorithm. Another crucial new
technical development of this paper is the learning
strategy based on feedback, which is described in
section 2.3. The combination of two new methods
greatly improves speed, reliability, and accuracy of
the algorithm.

2.2. Introduction of Double-Center
“Stars”

The single-center star method is not flawless. It
works well when the two protein chains match well
or the chain diameters are small. However, we have
found that it is less stable when the chains do not
match very well or the chain diameters are large.
This is caused by deleting badly matched Cα pairs
from each star, a method applied to obtain a global
alignment candidate. When local alignments are
grouped into an initial star, there may exist point
pairs which do not match well. An initial trans-
formation is calculated and the worst matched pair
based on that transformation is first deleted, then the
transformation is recalculated to select the second
worst pair. This process is repeated. In this way the
well matched pairs survive and the (Cα) RMSD be-
comes smaller and smaller, until an acceptable (Cα)
RMSD is achieved. The effect of deleting bad point
pairs relies on a good initial transformation, which
in turn depends on the star center selection. With
a single star center, the initial transformation has
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Fig. 3. A global alignment

great freedom to move and rotate in the point pair
deletion process, thus the deletion may go along a
more unpredictable way. This is more obvious when
the local alignments are relatively short, which usu-
ally happens when the chains do not match very well
or the chain diameters are large. Based on this ob-
servation, we consider grouping local alignments into
double-center “stars”.

A “double-center star” is, as suggested by its
name, a “star” with two centers. Each single-center
star can be extended to a corresponding double-
center star, while the latter is much more stable.
In a single-center star, each local alignment consis-
tent with the center is added to the star, while in
a double-center star, a local alignment can be added
only when it is consistent with both centers. The first
center of a double-center star is exactly the one in a
single-center star, and the second center is selected
from that star. The selection of the second center
satisfies the following conditions: (1) it is consistent
with the first center, (2) it is long enough to make
sense, and (3) it is as far as possible from the first

center. Figure 4 illustrates a double-center star cor-
responding to star 5 in Figure 2, suppose L2 is the
second center.

Double−center star 5

L1

L2

L6

L5 (Center 1)(Center 2)

Fig. 4. A double-center star

Each local alignment in a single-center star is
consistent with the center, however, this does not au-
tomatically guarantee that all the local alignments in
the star are consistent. The consistency relationship
is not necessarily transitive. To reduce the proba-
bility of adding inconsistent local alignments to the
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star, a double-center star accepts local alignments
in a more prudent way. It rejects the local align-
ments originally surviving in the single-center star
on a weak basis, therefore local alignments in the
double-center star are more likely to be those very
good ones. To some extent, the presence of the sec-
ond center has the effect of “extending” the local
alignment in the first center. With such a long “local
alignment” as the center, the star will be more stable
because points in it have much less freedom to move
or rotate. From another aspect, with this improve-
ment the extent to which the initial transformation
will change along with the deletion of bad point pairs
is reduced significantly - the initial transformation
will be closer to the final one, and thus the deletion
will cause less unpredictability. Furthermore, the fil-
tering of unpromising local alignments reduces their
negative contribution to the overall transformation
(as well as the number of point pairs involved in the
initial star), speeding up the deletion process and
resulting in a faster and better global alignment.

2.3. Development of Learning Ability

2.3.1. Self-learning

As we have mentioned, good star centers produce
promising stars and have a greater probability of gen-
erating good global alignments. However, thus far
the selection of star centers has been näıve: any local
alignment with sufficient length can be the center of
a star. The double-center method helps remove some
unpromising local alignments from a star when the
first center is determined, but it contributes nothing
to the selection of the first center. If the first cen-
ter of a star can be selected intelligently rather than
by arbitrarily picking up a local alignment, then the
star may yield a better global alignment. This in-
telligence may be difficult to achieve without any a
priori knowledge on the global structural similarity
between the two chains. However, when such knowl-
edge is available, it is possible to improve the align-
ment by way of a self-learning strategy.

Once a currently optimal global alignment is out-
put, we are able to know approximately where the
aligned positions are. We organize the consecutively
aligned point pairs into groups, and each group of
consecutive point pairs is called a global alignment

segment. A global alignment segment looks exactly
like a local alignment, while as a part of a good global
alignment, it should be a good “local alignment”.
Here local alignment is quoted because global align-
ment segments are not output of the local alignment
phase, although there is no substantial difference be-
tween both definitions. To take advantage of these
good global alignment segments, we apply a feedback
mechanism to teach our alignment algorithm how to
improve itself. The self-learning is implemented via
the iterative utilization of its own output. When
a global alignment is ready, consecutive alignment
segments are extracted, then each segment is used
as a new star center and local alignments consistent
with the center are added to its group. This global
alignment phase is repeated with a few new stars ob-
tained from the currently optimal global alignment,
until the alignment output converges (i.e. no changes
are found between two iterations).

2.3.2. Learning from others

When a global alignment from another algorithm is
available, the global alignment segments in that re-
sult can work as initial star centers. These centers
are likely to be better than our own local alignments
because they are from an optimal alignment result
obtained from another algorithm. With these cen-
ters, our global alignment searching starts from a
very good jumping-off point, therefore it is possi-
ble to output a result better than without learning.
Learning from other algorithms may be more effec-
tive in the cases our algorithm performs worse than
others. When it performs better than other algo-
rithms even without learning, this learning may be
less necessary, however it is never harmful, because if
it results in a worse global alignment, its results can
simply be disregarded. Therefore the combination
of self-learning and learning-from-others will never
output an alignment worse than the one of another
algorithm. In the worst case it outputs nothing dif-
ferent. For this reason, our algorithm can also be
used to improve the result of any other algorithm.
We call this a refinement to that algorithm.
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Fig. 5. The SLIPSA framework

3. THE FORMAL DESCRIPTION OF
SLIPSA

We give the formal description of SLIPSA. Com-
bining the double-center star, the self-learning and
the learning-from-others methods which use feed-
back, we greatly improve our earlier work 25 and have
found interesting results when comparing SLIPSA
with some other algorithms. The SLIPSA framework
is shown in Figure 5. This system takes six param-
eters: protein chains S and S′, RMSDmax (a user
specified maximum (Cα) RMSD), distance constant
ε, minimum local alignment length lmin, and an op-
tional external global alignment AG Ext. Parameters
S and S′ are determined by the user, RMSDmax

is either determined by the user or obtained from
another algorithm, ε and lmin are selected empiri-
cally according to the user input, and AG Ext is ei-
ther empty or also obtained from the external algo-
rithm. The system outputs an optimal global align-
ment result consisting of AG (a set of global align-
ment segments), (Cα) RMSD (a value not greater
than RMSDmax) and F (a rigid body transforma-
tion corresponding to the final global alignment).
The following sub-sections describe the details of the
SLIPSA algorithm.

3.1. Getting Local Alignments

The calculation of local alignments has been re-
viewed in section 2.1. The procedure used to get
local alignments can be from either Ref. 25 or other
related papers (e.g. Ref. 21). The procedure body
is omitted.
Get-Local-Alignments(S, S′, ε, lmin)
Input: protein backbone chains S = p1 · · · pn, S′ =

q1 · · · qm, distance constant ε and minimum local
alignment length lmin, where each pi or qi is a 3-
D point corresponding to a Cα atom in a protein
backbone.
Output: AL = {L1, L2, · · · , Lw}, a set containing all
the local alignments of length ≥ lmin between S and
S′.

3.2. Building up Stars from Local
Alignments

The improved procedure outputs double-center stars.
The input is star centers from a set of global align-
ment segments, or from a local alignment set when
the former is empty. The non-center nodes in a star
are still chosen from the local alignment set.
Build-Double-Center-Stars(AL, AG)
Input: AL = {L1, L2, · · · , Lw} and AG =
{L1′ , L2′ , · · · , Lw′}, where AL is a set of local align-
ments and AG is a set of global alignment segments.
Output: Universe = {Star1, Star2, · · · , Stark}, a
set of all the unique double-center stars.
begin

Universe← {} (the empty set);
if (AG = {}) then A← AL;
otherwise A← AG;

for (each local alignment Lu in A)
find Lu′ , the second center based on Lu,
in A;

Staru ← {Lu, Lu′};
for (each local alignment Lv in AL)

if (Lv is consistent with both Lu and
Lu′) then Staru ← Staru ∪ {Lv};

end for
if (Staru 6∈ Universe)
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then Universe← Universe ∪ {Staru};
end for
return Universe;

end

3.3. Finding a Global Alignment from
the Stars

In each iteration of our algorithm, a global alignment
is output and used as an input of the next iteration.
We describe how to prune the set of aligned pairs in
a star and obtain the global alignment which has an
(Cα) RMSD not greater than that specified by the
user. We refine a similar idea that was used in our
original algorithm 25, which does not use feedback.
Prune-One-Star(Star,RMSDmax)
Input: a Star and RMSDmax (a user specified max-
imum RMSD).
Output: (AS , RMSDS , FS , lS), where AS =
{L1′′ , L2′′ , · · · , Lw′′} is a set of global alignment seg-
ments which share a common transformation FS

with RMSDS ≤ RMSDmax, and lS is the number
of aligned point pairs in AS .
begin

AS ← Star;
lS ← the number of point pairs involved in AS ;
calculate transformation FS and RMSDS for all
the point pairs involved in AS ;

while (RMSDS > RMSDmax)
delete point pair (p, q) with the largest
d(p, FS(q)) in AS ;

lS ← lS − 1;
recalculate transformation FS and RMSDS

for all the point pairs involved in AS ;
end while
return (AS , RMSDS , FS , lS);

end
In the following function Find-Global-

Alignment(), we apply the Prune-One-Star() pro-
cedure to each of the stars in the universe which is
built from Build-Double-Center-Stars(). The align-
ment that contains the largest number of aligned
pairs will be returned.
Find-Global-Alignment(Universe,RMSDmax)
Input: Universe = {Star1, Star2, · · · , Stark} and
RMSDmax (a user specified maximum RMSD).
Output: (AG, RMSD,F ), where AG =
{L1′ , L2′ , · · · , Lw′} is a set of global alignment seg-

ments which share a common transformation F with
RMSD ≤ RMSDmax.
begin

sort Universe by a descending order of the
number of 3-D point pairs involved in each star;

lmax ← 0;
for (each Staru in Universe)

(AS , RMSDS , FS , lS)← Prune-One-Star
(staru, RMSDmax);

if (lS > lmax) then AG ← AS ; RMSD ←
RMSDS ; F ← FS ; lmax ← lS ;

end for
return (AG, RMSD,F );

end

3.4. The Feedback Procedure

This is the main procedure of SLIPSA. It calls
Get-Local-Alignments in the first step, then Build-
Double-Center-Stars and Find-Global-Alignment are
called repeatedly. A global alignment output by the
current iteration serves as the input of the next it-
eration. The procedure terminates when the global
alignment ceases to change (i.e. converges).
SLIPSA(S, S′, ε, lmin, RMSDmax, AG Ext)
Input: S, S′, ε, lmin, RMSDmax and AG Ext, where
AG Ext can be either empty or a set of global align-
ment segments obtained from an external algorithm.
Output: (AG, RMSD,F ).
begin

AL ← Get-Local-Alignments(S, S′, ε, lmin);
AG ← AG Ext;
do

A′
G ← AG;

Universe← Build-Double-Center-Stars
(AL, A′

G);
(AG, RMSD,F )← Find-Global-Alignment
(Universe,RMSDmax);

while (AG 6= A′
G);

return (AG, RMSD,F );
end

When no external alignment is avail-
able, procedure SLIPSA is called by way
of SLIPSA(S, S′, ε, lmin, RMSDmax, {}).
When it is available, SLIPSA can be called as
SLIPSA(S, S′, ε, lmin, RMSDmax, AG Ext). We call
this a refinement to external alignment AG Ext. To
independently test the performance of our algorithm,
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none of the experiments reported in section 4 uses
any external alignment as our input.

4. EXPERIMENTAL ENVIRONMENT
AND RESULTS

4.1. Our Web Alignment Tool

We have developed a web alignment tool based on
the SLIPSA algorithm. The website is available for
public access at http://fpsa.cs.uno.edu/ with a mir-
ror site at http://fpsa.cs.panam.edu/FPSA/. It is
not only a SLIPSA alignment tool but also an align-
ment comparison tool between SLIPSA and DaliLite,
CE and SSM, some commonly used protein structure
alignment algorithms with public websites.

The data used for protein alignment are the PDB
files downloaded from the RCSB Protein Data Bank.
The files have been moved to the Worldwide Protein
Data Bank (wwPDB) by the time we wrote this pa-
per. As of March 2008, there were over 49,000 pro-
tein structures with over 100,000 chains discovered.

Our website is built on an Intel dual-Xeon 3G
Hz PC server with 3GB memory. The web devel-
opment tools we have used include Apache HTTP
server with PHP support, ActivePerl and MySQL
database server. The SLIPSA algorithm is writ-
ten in MATLAB. See Refs. 20 and 2 for the rigid
body transformation method that we have used in
SLIPSA.

The work flow of our website is shown in Fig-
ure 6. Besides a maximum value for (Cα) RMSD, it
accepts either PDB IDs or user uploaded PDB files
as input. It is optional to compare SLIPSA with
DaliLite, CE or SSM. When a comparing option is
chosen, our tool automatically submits alignment re-
quest to and retrieves result from DaliLite, CE or
SSM website, and performs SLIPSA alignment ac-
cording to the retrieved (Cα) RMSD value. The
website outputs the following alignment results. Be-
yond the first result listed, all others are optional de-
pending on the user choices. Note that SLIPSA out-
puts AG (a set of global alignment segments), (Cα)
RMSD and F (a rigid body transformation).

(1) (AG, RMSD,F )SLIPSA: the SLIPSA result with
a user specified RMSDmax.

(2) (AG, RMSD)DaliLite: the DaliLite result re-
trieved automatically from its website.

(3) (AG, RMSD,F )DaliLite Comp: the SLIPSA re-
sult with an RMSD retrieved from DaliLite
website as input. This result is used to compare
SLIPSA with DaliLite.

(4) (AG, RMSD)CE : the CE result retrieved auto-
matically from its website.

(5) (AG, RMSD,F )CE Comp: the result used to
compare SLIPSA with CE.

(6) (AG, RMSD)SSM : the SSM result retrieved au-
tomatically from its website.

(7) (AG, RMSD,F )SSM Comp: the result used to
compare SLIPSA with SSM.

4.2. Experimental Results

We have collected 224 alignment cases to test the
performance of our algorithm. The test cases were
originally proposed by various papers for various
testing purposes. They include No. 1 - No. 20 (see
Table III in Ref. 16), No. 21 - No. 88 (see Table I in
Ref. 5), No. 89 (see Tables I and II in Ref. 16), No.
90 - No. 92 (supplement to Table III in Ref. 16), No.
93 (see Figure 5 in Ref. 16), No. 94 - No. 101 (see
Table IV in Ref. 16), No. 102 - No. 111 (see Table V
in Ref. 16), No. 112 - No. 120 (supplement to Table
V in Ref. 16), No. 121 - No. 124 (see Table VII in
Ref. 16), No. 125 - No. 143 (see Table 1 in Ref. 15),
No. 144 - No. 183 (see Table 1 in Ref. 22) and No.
184 - No. 224 (see Table 2 in Ref. 22). Due to the
space limit, the PDB IDs of those proteins are not
listed in this paper and they can be provided upon
request.

Based on this test set, we compare SLIPSA with
DaliLite, CE and SSM in terms of Nmat (the num-
ber of aligned positions) and (Cα) RMSD. Com-
mon protein alignment scoring methods such as Z-
score, Q-score, P-score and geometric measures pro-
posed in Ref. 10 all take Nmat and (Cα) RMSD

into account. Because of the RMSD flexibility of
SLIPSA, it is easy to compare SLIPSA with DaliLite,
CE and SSM on the basis of Nmat because in most
cases SLIPSA outputs an equal (Cα) RMSD. In
each test case SLIPSA outputs an (Cα) RMSD not
greater than that of DaliLite, CE, or SSM. If Nmat

of SLIPSA is larger than Nmat of DaLiLite, CE,
or SSM, we call it an Nmat increment. Similarly,
if the (Cα) RMSD of SLIPSA is smaller than the
(Cα) RMSD of DaLiLite, CE or SSM, we call it a
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Fig. 7. Comparing SLIPSA with DaliLite, CE and SSM

(Cα) RMSD decrement. The Nmat increment rate
is calculated by (Nmat SLIPSA − Nmat X) / Nmat X

and the (Cα) RMSD decrement rate is calculated
by (RMSDX − RMSDSLIPSA) / RMSDX , where
X is DaliLite, CE or SSM. Figure 7 illustrates such
increments and decrements in percentage. For the
convenience of illustration, the results are sorted in
a descending order of the Nmat increment rate. Due
to the space limit, the detailed result data are not
listed in this paper. They can be provided upon
request. It should be mentioned that, (1) no SSM
comparison was performed in our earlier paper 25;
(2) in a few cases that we could not find results on

the DaliLite, CE or SSM websites, we marked the
cases as “n/a” and did not compare SLIPSA with
them; (3) from the time we completed this paper, it
is possible to see result changes on any of the align-
ment websites and we have observed minor changes
on some of them; (4) the SLIPSA experiments did
not use any external alignment as input, although
our algorithm is able to refine the alignment results
retrieved from other web servers.

4.3. Discussion on the Results

Table 1 shows some statistical data based on the
results in Figure 7. For each case in which an
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Table 1. Statistics on the experimental results

DaliLite CE SSM
Number of valid cases 210 220 218

Cases with larger Nmat by SLIPSA 149(66.67%) 136(61.82%) 189(86.70%)

Cases with smaller Nmat by SLIPSA 14(6.67%) 26(11.82%) 8(3.67%)
Maximum Nmat increment by SLIPSA 49 56 51

Maximum Nmat decrement by SLIPSA 2 9 12

Maximum Nmat increment rate by SLIPSA 65.33% 64.58% 109.09%
Maximum Nmat decrement rate by SLIPSA 2.74% 6.45% 25.53%

Average Nmat increment by SLIPSA 4.15 3.63 7.24

Average Nmat increment rate by SLIPSA 4.56% 4.13% 7.37%

Cases with smaller RMSD by SLIPSA 56(26.67%) 64(29.09%) 177(81.19%)
Maximum RMSD decrement by SLIPSA 0.7 0.4 0.52

Maximum RMSD decrement rate by SLIPSA 13.21% 11.11% 16.56%

Average RMSD decrement by SLIPSA 0.04 0.04 0.05
Average RMSD decrement rate by SLIPSA 1.55% 1.42% 2.07%

Table 2. Comparison based on weak similarity

DaliLite CE SSM

Valid Cases Avg. Nmat Inc. Valid Cases Avg. Nmat Inc. Valid Cases Avg. Nmat Inc.

RMSD ≥ 5.0 12 26.48% 14 21.62% 0 /

RMSD ≥ 4.0 20 23.48% 41 14.75% 9 17.50%

RMSD ≥ 3.0 77 10.09% 102 7.64% 51 12.15%

alignment result was missing from either DaliLite,
CE or SSM, we did not compare it with SLIPSA.
Also, since DaliLite, CE and SSM may have differ-
ent (Cα) RMSD values for a given test case, they
were not compared mutually. In our experiments,
when compared with DaliLite, CE and SSM respec-
tively, SLIPSA outputs a larger Nmat in 66.67%,
61.82% and 86.70% of the cases; The maximum
Nmat increment rate of SLIPSA is 65.33%, 64.58%
and 109.09%; Averagely, SLIPSA increases 4.56%,
4.13%, and 7.37% of the Nmat; In 26.67%, 29.09%
and 81.19% of the cases SLIPSA outputs a smaller
(Cα) RMSD with the maximum (Cα) RMSD decre-
ment rate being 13.21%, 11.11% and 16.56%. To sum
up, in most cases we see SLIPSA results with a larger
or same Nmat and a same or smaller (Cα) RMSD.
In some cases that SLIPSA outputs a smaller Nmat,
we also see a smaller (Cα) RMSD.

We also attempt to compare SLIPSA with
DaliLite, CE and SSM in the cases of weak similar-
ities. To simplify the comparison process, we tenta-
tively define a weak similarity as a large (Cα) RMSD

between aligned chains. This definition may be in-
complete, however, we have already observed some

interesting results. For example, when compared
with DaliLite and CE, the average Nmat increment
rates of SLIPSA are 4.56% and 4.13% respectively,
while in the cases with (Cα) RMSD ≥ 5.0, the num-
bers are 26.48% and 21.62%, much higher than the
overall average values. See Table 2 for details. In
brief, SLIPSA obtains high average Nmat increment
rate in weak similarity cases, and the larger the (Cα)
RMSD, the higher the average Nmat increment rate.

The running time of each algorithm was
recorded. The average running time of DaliLite,
CE and SSM is 16.86s, 6.14s and 9.15s, respectively.
When compared with them (i.e. using the RMSD

from the best fit from the comparison algorithms
as the RMSD upper-bound in SLIPSA), the aver-
age running time of SLIPSA is 105.97s, 69.89s and
81.43s, respectively. In about 50% of the cases the
SLIPSA average time is below the DaliLite average,
and the corresponding numbers for CE and SSM are
about 25% and 28%, respectively. Possible ways to
reduce the running time are discussed below.

(1) The web server was built on a slow ma-
chine. We have also tested the algorithm on an
IBM ThinkPad laptop computer with Core2 Duo
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1.8GHz CPUs. This machine was much slower than
the mainstream web server machines, while the same
results took only 1

2 to 2
3 of the time used on our cur-

rent web server. It is possible to improve the speed
to great extent by using a machine with high com-
putational performance. (2) We used Matlab to im-
plement the algorithm. Matlab facilitates the proof-
of-concept development of complicated scientific pro-
grams, however, according to our experience it is pos-
sible to speed up algorithms at least several times if
they are implemented in other languages such as C,
C++ and Java. In addition, parallel and distributed
programming on high performance computational re-
sources can also help reduce the execution time. (3)
The algorithm is slower when the proteins are long
and/or the (Cα) RMSD is large. In such cases the
number of local alignments are large and the graph
complexity is high. However, the algorithm can be
optimized to reduce the complexity. Possible meth-
ods include reducing the dimension of data, remov-
ing unpromising local alignments as early as possible,
limiting the number of times of feedback, and so on.
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