
15

A PROBABILISTIC CODING BASED QUANTUM GENETIC ALGORITHM FOR
MULTIPLE SEQUENCE ALIGNMENT

Hongwei Huo*, Qiaoluan Xie, and Xubang Shen

School of Computer Science and Technology, Xidian University

Xi’an, Shaanxi 710071, P.R.China
*Email: hwhuo@mail.xidian.edu.cn

Vojislav Stojkovic

Computer Science Department, Morgan State University

Baltimore, Maryland 21251, USA

Email: vojislav.stojkovic@morgan.edu

This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic

algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment.

A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the

coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in

quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well

known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN

results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The

QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the

quantum algorithm lowers the cost of overall running time.

* Corresponding author.

1. INTRODUCTION

Multiple Sequence Alignment (MSA) is one of the most

challenging tasks in bioinformatics. Most of the

MSA methods are based on the dynamic programming

approach. The dynamic programming approach requires

time proportional to the product of the lengths of

sequences which makes it computationally difficult. In

the general case, the theoretical sound and biologically

motivated scoring methods are not straightforward

connected. Usually, it is hard to efficiently align more

than a few sequences. For larger instances, a variety of

heuristics strategies have been developed. In general,

two basic classes of MSA methods have been proposed:

progressive alignment and iterative alignment
1
.

Progressive alignment methods use dynamic

programming to build MSA. The best known software

system based on progressive alignment method is maybe

CLUSTALW
2
. Other well-known MSA systems based

on progressive alignment method are MULTALIGN
3
,

T-COFFEE
4
, MAFFT

5
, MUSCLE

6
, Align-m

7
, and

PROBCONS
8
. Mostly, they target proteins or short

DNA sequences. The main advantages of progressive

alignment methods are speed and simplicity. The main

disadvantage of progressive alignment methods is

that mistakes in the initial alignments of the most

closely related sequences are propagated to the multiple

alignments.

Iterative alignment methods depend on algorithm

that produces an alignment and refines it through a

serious of iterations until no more improvement can be

made. Iterative alignment methods can be deterministic

or stochastic. The deterministic iterative strategies

involve extracting sequences one by one from a multiple

alignment and realigning them to the remaining

sequences. Stochastic iterative alignment methods

include Hidden Markov Model (HMM) training,

simulated annealing
9
 and evolutionary computation

10
.

The main advantage of stochastic iterative alignment

methods is a good separation between the optimization

process and evaluation criteria. The main disadvantages

of stochastic iterative alignment methods are local

optima, slow convergent speed, and lacking a specific

termination condition.

 16

In the last twenty years a growing interest in

quantum computation and quantum information is due to

the possibility to efficiently solve hard problems for

conventional computer science paradigms. Quantum

algorithms exploit the laws of quantum mechanics.

The quantum computation can dramatically improve

performance for solving problems like factoring and

search in an unstructured database. Genetic algorithms

are stochastic search algorithms based on the principles

of natural selection and natural genetics. They work on a

set of chromosomes, called population that evolves by

means of crossover and mutation towards a maximum of

the fitness function. Genetic algorithms are efficient and

flexible algorithms.

Han-Kim
11

 proposed the possibility to integrate the

quantum and genetic algorithms. Huo and Stojkovic
12

presented Quantum-inspired Evolutionary Algorithms

(QEA) with a quantum representation. By adapting a

qubit chromosome representation, a quantum population

is generated. Classical population is generated by

performing measurements on the quantum population.

The best elements are searched in the classical

population and used to update the quantum population.

Experiments are carried out on the knapsack problem.

Now we go one step further. We redesigned QEA to

solve the multiple sequence alignment problem. This

paper presents a Quantum Genetic algorithm for

Multiple sequence ALIGNment (QGMALIGN). It

exploits the expression power of quantum mechanics in

the coding and shows how to take advantage of

quantum phenomena to efficiently speed up classical

computation. A new probabilistic coding method for the

MSA representation is given. A quantum rotation gate

as a mutation operator is used to guide the quantum

state evolution of the population. Six genetic operators

are designed on the basis of the coding to help to

improve the solutions during the evolutionary process.

The features of implicit parallelism and state

superposition in quantum mechanics and the global

search capability of the genetic algorithm are exploited

to perform efficient computation. The COFFEE

(Consistency based Objective Function For alignmEnt

Evaluation)
13

 function is used to measure individual

fitness. To demonstrate QGMALIGN’s effectiveness, a

set of well known test cases from BAliBASE2.0 is

used as reference to evaluate the efficiency of the

optimization for QGMALIGN. The QGMALIGN

results have been compared with the most popular

methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA,

and QGMALIGN) results. The QGMALIGN results

show that QGMALIGN performs well on the presenting

biological data.

2. CODING AND FITNESS
 EVALUATION

2.1. Quantum probabilistic coding

The basic information unit of quantum computation is

the qubit. A qubit is a two-level quantum system and can

be considered a superposition of two independent basis

states |0〉 and |1〉, denoted by:

 |ψ 〉 = α |0〉 +β |1〉. (1)

where α and β are complex number such that |α |2 + |β |2

= 1.

A two-level classical system can be only in one

of the basis states |0〉 or |1〉. α and β are probability

amplitudes associated with the |0〉 state and the |1〉 state,

respectively. If we want to transfer information from

the quantum system to a classical 0-1 system, we have

to perform measurement of the quantum state, whose

result is probabilistic: we get the state |0〉 with

probability |α |2 and the state |1〉 with probability |β |2.

There is no way to know exactly both values. We cannot

clone the unknown state |ψ 〉 as stated by the No cloning

theorem.

The evolution of a quantum system is described by

a special linear operator, unitary operator Uf, which

operates on qubits.

Uf |ψ 〉 = Uf [α |0〉 + β |1〉] = αUf |0〉 + βUf |1〉

An important consequence of the linearity of quantum

operators is that the evolution of a two-level quantum

system is the linear combination of the evolution of the

basis states |0〉 and |1〉. It is possible to compute f(x) for

many different values of x simultaneously in a single

application of Uf.

A system of m-qubits can represent 2
m
 different

states simultaneously. The observing quantum state

collapses to a single state among these states.

A qubit individual in a quantum genetic algorithm is

defined as follows:

q =

m

m

β

α

β

α

β

α

...

...

2

2

1

1 . (2)

 17

where |αi |
2
 + |βi |

2
 = 1, i = 1, 2, …, m. The quantum

coding is inspired by the features of quantum mechanics.

During the evolution process of a quantum system, we

need to compute |αi |
2
 to obtain the probability matrix of

the quantum system and then to transform it to the

corresponding binary matrix by performing the quantum

observation. The quantum variation has an indirect

effect on the qubit state by changing the values of αi at

the expense of some extra space for storing probability

matrix. It is disadvantageous for solving complex

problems. The new quantum probabilistic coding is

proposed for representing the multiple sequence

alignment. This way of coding shields the underlying

information of complex α and β. The genetic operators

can perform directly on the probabilistic matrix while

the feature of superposition from quantum mechanics is

preserved.

Assume that Q(t) = {q
t
1,q

t
2,…,q

t
n} is a population

of the generation t, where n is the number of

chromosomes in the population. The chromosome q
t
j is

defined as

]...[321

t

jm

t

j

t

j

t

j

t

j ppppq = . (3)

where p
t
ji = |β t

ji |
2
, p

t
ji is the probability of the letter

being observed with value one at that position, p
t
ji is the

length of the chromosome. When p
t
ji = 1/2, there are 2

m

underlying different linear superposition states occurring

with the same probability. The probabilistic coding

that substitutes the form of (2) simplifies the encoding

and saves the running time of the algorithms while

maintaining the quantum properties.

2.2. Mapping the coding to the
 solution to MSA

The MSA problem can be formulated mathematically as

follows: Given n sequences S = {S1, S2,…, Sn} defined

over the finite alphabet Σ, where n ≥ 2. Sij where 1 ≤ i ≤

n, 1≤ j ≤ li is a character of the alphabet Σ, where li is the

length of Si. A potential alignment is the set S’ = {S’1,

S’2, …, S’n}, satisfying the following conditions: (i) The

sequence S’i is the extension of Si and is defined over the

alphabet Σ’ = Σ ∪ {-}. ‘-’ denotes a gap. The deletion of

gaps from S’i gives Si; (ii) S’i and S’j have the same

length; (iii) An objective function is a reference to

biological significance that evaluates the quality of

alignments.

An alignment for MSA can be obtained by

measuring the quantum probabilistic matrix. The system

collapses to a superposition of states that have the

observed fitness. The measurement operation stems

from quantum observation on a quantum computer. The

difference is that the quantum observation on a quantum

state can be performed many times without destroying

all other configurations as it is not done in pure

quantum systems. The quantum observation allows us to

extract one state from the superposition of quantum

probabilistic representation, having value of one with

probability pji and zero with probability 1–pji. The result

of this operation is a binary matrix (BM, see Fig. 1).

‘1’means that there is a letter at the position of the

original sequence. ‘0’means a gap. The number of ‘1s’

in a row has to be the length of the sequence. The result

must be repaired to fit the length of the sequence. Fig. 2

shows the alignment obtained from the binary matrix.

()
()
()

→

1111

0101

1101

0.650.900.4285.0

45.087.00.500.77

95.085.034.085.0

Fig. 1. Measurement operation.

→

RFEA

_F_A

RF_A

1111

0101

1101

Fig. 2. From binary matrix to an alignment.

2.3. Objective function

Objective function is used to measure the quality of

MSA, which provides the basis for selection mechanism

of the algorithm. Ideally, what score is better, then the

multiple alignment is more biologically relevant. In this

paper, we have used the COFFEE function as fitness

criterion. Firstly we have a set of pairwise reference

alignments (library), which includes n*(n-1)/2 pairwise

alignments. The COFFEE function evaluates the

consistency between the current multiple alignment and

the pairwise alignments contained in the library. It can

be formalized as follows:

×

×= ∑∑∑∑

−

= +=

−

= +=

1

1 1

1

1 1

)()()(
N

i

N

ij

ijij

N

i

N

ij

ijij ALENWASCOREWACOST
 (4)

 18

where N is the number of sequences to be aligned. Aij is

the pairwise projection (obtained from the multiple

alignment) of sequences Si and Sj, LEN(Aij) is the length

of this alignment, SCORE(Aij) is the number of aligned

pairs of residues that are shared between Aij and the

corresponding pairwise alignment in the library, and Wij

is the weight associated with the pairwise alignment.

3. THE OPTIMIZATION MECHANISM OF
 QUANTUM GENETIC ALGORITHM

3.1. Quantum mutation

The mutation operator in standard genetic algorithms

is performed randomly. Individual variation of the

evolutionary process with random disturbances can

slow the convergent process. Quantum evolutionary

processes are unitary transformations: rotations of

complex space. Repeated application of a quantum

transform may rotate the state closer and closer to the

desired state. The basic result for quantum evolutionary

process is that an unitary matrix can be represented by a

finite set of universal gates. The quantum state evolution

is guided by adding the optimal individual information

to the variation so as to increase the probability of

some quantum states to observe the better alignments

and improve the convergence for the algorithm. The

quantum rotation gate is the quantum unitary

transformation U, defined as follows:

 −
=

)(cos)(sin

)(sin)(cos
)(

δθδθ

δθδθ
δθU

the angles δθ can be found in table 1. The rotation gate

is used to update the quantum state.

 −
=

=

i

i

i

i

i

i U
β

α

δθδθ

δθδθ

β

α
δθ

β

α

)(cos)(sin

)(sin)(cos
)(

'

'

. (5)

The quantum rotation gate is implemented by

rotating the complex space. In Fig. 3, |α |2 gives the

probability that the qubit will be found in the |0〉 state

and |β |2 gives the probability that the qubit will be

found in the |1〉 state. Counterclockwise rotation in the

first and third quadrants will increase the probability

amplitude |β |2, while in the second and fourth quadrants

will increase the probability amplitude |α |2.

0

δθ±

iα

iβ

〉1|

〉0|

〉Ψ|

Fig. 3. Quantum observation: a projection on the basis.

According to the quantum probability coding,

expression (5) can be simplified as follows:

 +−+=)1)((sin)(cos 22'

iii ppp δθδθ

)1()(sin)(2cos ii pp −δθδθ . (6)

Eq. (6) hides the influence of the sign of αi and βi on pi.

The unitary transformation makes pi to take real values

between 0 and 1. Only angles in the first quadrant can be

took into account, as shown in Fig. 2.

 The setting of rotation angle δθ is through

experimentation and refer to the results in reference 11.

The settings of δθ are application dependent. Many

factors have an influence on the selection of the rotation

angles, including the numbers of iterations associated

with the characteristics of the sequences, the diversity of

the population and convergent rate. Following the

experimentation on the multiple sequence alignment

problem, a lookup table for the choice of δθ is shown in

the table 1. The values of the fitness for the best

chromosome in the third column in the table have all

values false because when the genetic operators perform

on the chromosomes - the best one has been optimal in

the current population.

Table 1. Lookup table of the rotation angle δθ.

xi besti f(x) ≤ f(best) δθ

0 0 false -0.005π

0 1 false 0.025π

1 0 false -0.025π

1 1 false 0.005π

3.2. Genetic operators

The quantum mutation operator can bring good

diversity of population. However, for the complexity of

MSA, it is more probably for the evolutionary process to

trap into the local optimum. Therefore, several

 19

genetic operators are designed to avoid local optimum

inspired by SAGA
10

, which enhanced the capabilities to

find the global optimal solutions.

3.2.1. Local adjustment mutation

operators

To improve the convergence - the better evolutionary

strategies are needed. Inserting a gap to the left or to the

right of the same position in each of the selected

sequences often generate a better arrangement. An

operator is designed to move blocks of residues or gaps

inside an alignment. Two local adjustment operators are

designed: the ResidueBlockShuffle operator and the

GapBlockShuffle operator.

ResidueBlockShuffle: Move a full block without gaps

to the right or to the left one position. A gap is inserted

into the left or the right to that position. The block of

randomly chosen length is chosen at a random position.

Fig. 4(a) outlines this mechanism.

GapBlockShuffle: Split the block horizontally with the

probability 15% and move one of the sub-blocks to the

left or to the right. Move a full block of gaps with the

probability 85% to the right or left until it merges with

the next block of gaps, as Fig. 4(b) indicates.

01.099.098.001.098.099.0

99.099.099.099.099.001.0

99.099.001.001.002.098.0

98.098.001.001.098.000.1

(a) ResidueBlockShuffle

01.099.098.001.098.099.0

99.099.099.099.099.001.0

99.099.001.001.002.098.0

98.098.001.001.098.000.1

(b) GapBlockShuffle

Fig. 4. Local adjustment mutation operator examples.

3.2.2. Global mutation operators

BlockMove: Find a block with gaps randomly in an

alignment, with width between two and length of the

sequence and exchange position of the block with the

position of a non-gap block. A special treatment for the

gap-column. Fig. 5 shows how the BlockMove operator

works. The length of the migration block is generated at

random. The new location is taken from the nearby

position including non-gaps with a large probability and

randomly generated. Migrates to the neighbor with a

large probability. The operator has a good effect on

avoiding the local optimum.

Fig. 5. Global mutation operator example: BlockMove.

ConsistencyShuffle: To make full use of the

information from pairwise alignment library to perform

the corresponding positions of adjustment and alignment,

the ConsistencyShuffle operator, inspired by PHGA-

COFFE, is designed to adjust the relative position of the

residues. The process is as follows: Find a non-gap

location of a sequence randomly in the multiple

alignment, such as the positions with box in Fig. 6(a);

Find the relative positions at which the selected

sequence is aligned in the pairwise alignments library

and record them in an array; Adjust gaps in the

alignment so that the letters of the site for the multiple

alignment coincide with the corresponding ones in

pairwise alignment library, see Fig. 6(b).

 (a) Finding the position in the pairwise library

 (b) Adjustment

Fig. 6. ConsistencyShuffle.

01.0

99.0

99.0

98.0

99.0

99.0

99.0

98.0

98.0

99.0

01.0

01.0

01.0

99.0

01.0

01.0

98.0

99.0

02.0

98.0

99.0

01.0

98.0

00.1

01.0

99.0

99.0

98.0

99.0

99.0

99.0

98.0

98.0

99.0

01.0

01.0

01.0

99.0

01.0

01.0

98.0

99.0

02.0

98.0

99.0

01.0

98.0

00.1

09.0

01.0

99.0

98.0

98.0

99.0

98.0

98.0

01.0

99.0

05.0

01.0

01.0

99.0

01.0

01.0

98.0

99.0

00.0

98.0

99.0

99.0

02.0

00.1

 20

The Crossover operators merge two different

alignments with a higher quality into a new one.

QGMALIGN implemented two different types of

crossover: SingleCrossover and UniformCrossover. The

former may be very disruptive. To avoid this drawback,

the UniformCrossover operator is designed to promote

multiple exchanges between two parents in a more

subtle manner. Exchanges are promoted between zones

of homology. In QGMALIGN, check whether or not the

two chromosomes can do UniformCrossover, otherwise

do SingleCrossover.

SingleCrossover: The X-shaped crossover is performed

at the point where the perfected matched column

belongs to, as shown in Fig. 7. After the crossover, the

two new alignments maybe don’t satisfy the constraints

to the length of the sequence. The new chromosomes

and the original chromosomes have different number of

gaps. So we have to adjust the new chromosomes. We

change pij with 1- pij in the shadowed area at random

until the requirement for the number of gaps is met.

UniformCrossover: Find the crossover position in the

two selected alignments, respectively. Children are

produced by swapping blocks between the two parents

where each block is randomly chosen between two

positions. The shadowed blocks (see Fig. 8) are

different areas between the two new alignments, coming

from the two parents. During the process, the gaps are

adjusting at random and the strategies are the same as

the ones used in SingleCrossover. The choice of

crossover points must satisfy the constraints: (i) The

distance between the crossover positions is at least ten;

(ii) At least one of the points is not available in another

alignment.

3.2.3. The Selection operator

The Selection operator chooses the good alignments

with a probability based on their fitness measured by

OF(Objective Funcation). The selection operator makes

sure that the good alignments survive and an optimal

alignment can be found. It acts the same roles as the

process of migration in evolutionary algorithms. The

Fig. 7. SingleCrossover operator.

Fig. 8. UniformCrossover operator.

 21

selection mechanisms in QGMALIGN are: typically

30% of the new generation is directly from the previous

generation with the fittest alignments and the remaining

70% of the chromosomes in the new generation are

created by roulette wheel selection.

3.3. Building the pairwise alignment
 library

In the QGMALIGN, the Needleman-Wunsch algorithm

is used to build the pairwise alignment library and

n*(n-1)/2 pairwise alignments are obtained. The

BLOSUM matrices are chosen as the substitute matrix

for protein sequences. The BLOSUM series ranges from

BLOSUM30 to BLOSUM90, which one to choose

depends on the distance between the two sequences, that

is, the similarity of the two sequences. The penalty

function is defined as follows:

 penalty(gaps) = GOP + NG*GEP (7)

where GOP (Gap Open Penalty) is a penalty for opening

a new gap, GEP (Gap Extension Penalty) is a penalty

for extending the length of an existing gap, and NG is

the length of the gaps after the extension.

4. ALGORITHM

To perform multiple sequence alignment, the MSA

method QGMALIGN is presenetd. QGMALIGN is

derived from applying genetic algorithm in quantum

computation. It uses a m-qubit representation variation

of the form (3). For each representation, a binary matrix

is defined, where each entry is selected using the

corresponding qubit probability, |αi |
2
 or |βi |

2
. It follows

that if |αi|
2
 or |βi|

2
 approaches to 1 or 0, then the

qubit chromosome converges to a single state and the

diversity given by the superposition of states disappears

gradually.

The quantum-inspired computing algorithm

QGMALIGN can be summarized in four steps:

(i) Initialize the population Q(t) = {q
t
1, q

t
2,…,q

t
n} of

n-qubit chromosomes, where

]...[321

t

jm

t

j

t

j

t

j

t

j ppppq = , j = 1,…,n;

(ii) Apply Hadamard gate to chromosome of the

population and generates a superposition of all 2
n

possible states;

(iii) A sequence of rotate gate and genetic operators to

evolve the population;

(iv) Quantum measurements and evaluation.

4.1. QGMALIGN algorithm

The QGMALIGN can be presented as a pseudocode as

follows:

Algorithm QGMALIGN

 1. Build pairwise library.

 2. Initial population QM of 10 chromosomes.

 3. Measurement from QM to BMs.

 4. Evaluate the solutions of BMs and save the best one

 to Best_BM.

 5. while (not termination-condition) do

 6. Apply global mutation with a probability.

 7. Apply local mutation with a probability.

 8. Apply the quantum mutation according to the

 best solution Best_BM.

 9. Measurement from QM to BMs.

 10. for each BMi do evaluate the corresponding

 alignment

 11. if (fitness of Best_BM < fitness of BMbest)

 12. Best_BM = BMbest

 13. Elite selection.

The procedure QGMALIGN works as follows. Line 1

uses the Needleman-Wunsch algorithm to build the

pairwise alignment library with n*(n-1)/2 pairwise

alignments. Line 2 initializes the population QM to 10

chromosomes. Line 3 extracts one state from the

superposition of quantum probabilistic representation,

having value of one with probability pji and zero with

probability 1–pji. The result of this operation is a binary

matrix. ‘1’ means that there is a letter at the position of

the original sequence. ‘0’means a gap. Line 4 uses the

COFFEE function to evaluate the alignment and

saves the current best alignment. Lines 2-13 refine an

alignment through a serious of optimization mechanisms.

A quantum rotation gate as a mutation operator is used

to guide the quantum state evolution. Six genetic

operators are designed on the coding basis to improve

the solution during the evolutionary process. The

procedure ternimates when the current best alignment is

not improved after 1000 times iterations.

 22

5. THE EXPERIMENTAL RESULTS
 AND ANALYSIS

5.1. The experimental results

The parameters in QGMALIGN have been set as

follows: GOP = 5, GEP = 0.1, the size of population is

10, and Tmax = 30000. The probabilities for various

operators are given in table 2.

The experimental database comes from benchmark

BAliBASE2.0. SPS (Sum-of-Pairs Score), is used to

evaluate the final alignment. Comparisons (see tables 3~

7) of the experimental results have been made with the

the most popular methods (CLUSTALX, SAGA,

DIALIGN, SB_PIMA, and QGMALIGN). Experimental

results show that QGMALIGN performs well.

Table 2. The probabilities for five genetic operators.

Name Probability

ResidueBlockShuffle 0.36

GapBlockShuffle 0.36

BlockMove 0.25

ConsistencyShuffle 0.65

Crossover 0.15

Table 3. SPS of Ref1.

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN

1idy 14% 5×65 0.705 0.342 0.018 0.145 0.450

1r69 13% 4×80 0.481 0.550 0.406 0.681 0.467

2trx 17% 4×95 0.754 0.801 0.728 0.451 0.515

1havA 15% 5×200 0.446 0.411 0.130 0.300 0.200

2hsdA 19% 4×260 0.691 0.771 0.679 0.470 0.313

Kinase 20% 5×280 0.736 0.862 0.764 0.733 0.345

1lvl 19% 4×450 0.632 0.619 0.699 0.559 0.223

1hfh 31% 5×125 0.917 0.945 0.410 0.868 0.687

1hpi 33% 4×75 0.861 0.916 0.785 0.909 0.762

1pfc 28% 5×110 0.988 0.994 0.894 0.927 0.808

451c 27% 5×85 0.719 0.662 0.729 0.541 0.554

1aym3 32% 4×235 0.969 0.955 0.962 0.976 0.720

1pii 32% 4×255 0.864 0.896 0.890 0.832 0.575

1pkm 34% 4×440 0.921 0.955 0.927 0.907 0.717

1csp 51% 5×70 0.993 0.993 0.980 1.000 0.921

1dox 46% 4×105 0.919 0.879 0.859 0.868 0.835

1fmb 49% 4×105 0.981 0.979 0.959 0.952 0.901

1plc 46% 5×95 0.958 0.931 0.931 0.904 0.931

2fxb 51% 5×65 0.945 0.951 0.945 0.945 0.946

9rnt 57% 5×105 0.974 0.965 0.864 0.970 0.978

1led 43% 4×250 0.946 0.923 0.516 0.987 0.765

1ppn 46% 5×230 0.989 0.983 0.648 0.962 0.910

1thm 49% 4×280 0.961 0.956 0.946 0.971 0.809

5ptp 43% 5×250 0.966 0.940 0.888 0.966 0.694

1gtr 42% 5×430 0.986 0.995 0.961 0.960 0.755

1rthA 42% 5×540 0.977 0.960 0.958 0.962 0.786

 23

Table 4. SPS of Ref2.

dataset identity Seq_no×length CLUSTALX SAGA DIALIGN SB_PIMA QGMALIGN

1idy 28% 19×65 0.515 0.548 F F 0.920

1ubi 32% 15×100 0.482 0.492 F 0.129 0.763

1aboA 28% 15×85 0.650 0.489 0.384 0.391 0.573

1csy 29% 19×100 0.154 0.154 F F 0.684

1r69 26% 20×80 0.675 0.475 0.675 0.675 0.738

1tvxA 34% 16×70 0.552 0.448 F 0.241 0.832

1tgxA 35% 19×80 0.727 0.773 0.630 0.678 0.697

2trx 34% 19×95 0.870 0.870 0.734 0.850 0.883

1sbp 23% 16×280 0.231 0.217 0.374 0.043 0.364

2hsdA 28% 20×250 0.484 0.498 0.262 0.039 0.601

1ajsA 35% 18×390 0.324 0.311 F F 0.612

1pamA 35% 18×500 0.761 0.623 0.576 0.393 0.572

2myr 32% 17×490 0.904 0.825 0.840 0.727 0.736

4enl 48% 17×450 0.375 0.739 0.122 0.096 0.655

Table 5. SPS of Ref3.

dataset identity Seq_no×length CLUSTALX SAGA DIALIGN SB_PIMA QGMALIGN

1idy 20% 27×70 0.273 0.364 F F 0.468

1r69 19% 23×85 0.524 0.524 0.524 F 0.247

1ubi 20% 22×105 0.146 0.585 F F 0.321

1pamA 34% 19×530 0.678 0.579 0.683 0.546 0.526

1ped 32% 21×425 0.627 0.646 0.641 0.450 0.372

1wit 22% 19×110 0.565 0.484 0.500 0.645 0.548

2myr 24% 21×540 0.538 0.494 0.272 0.278 0.547

4enl 41% 19×480 0.547 0.672 0.050 0.393 0.394

Table 6. SPS of Ref4.

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN

1csp 32％ 6×700 F F 0.889 F 0.304

1vln 43% 14×230 0.879 0.606 0.545 0.636 0.372

1ckaA 26％ 10×820 F 0.375 1.000 1.000 0.120

1mfa 18％ 8×480 1.000 0.385 1.000 0.846 0.345

1ycc 36％ 9×210 0.485 0.485 0.727 0.970 0.436

2abk 30％ 7×520 F F 1.000 0.471 0.126

 24

00.10.20.30.40.50.60.70.80.9
1 868 1735 2602 3469 4336 5203 6070 6937Number of iterationsFitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 498 995 1492 1989 2486 2983 3480 3977 4474 4971

Number of iterations

F
it
n
es

s

Table 7. SPS of Ref5.

dataset identity Seq_no×length CLUSTAL X SAGA DIALIGN SB_PIMA QGMALIGN

S51 21％ 15×335 0.938 0.831 0.646 0.338 0.363

S52 29％ 5×340 1.000 1.000 1.000 0.515 0.789

1eft 19％ 8×310 F F 0.579 F 0.088

1pysA 25％ 10×320 0.429 0.429 0.762 0.190 0.176

1qpg 35％ 5×510 1.000 0.521 1.000 1.000 0.525

1thm2 38％ 7×240 0.774 0.774 1.000 0.194 0.546

Kinase1 26％ 5×380 0.806 0.484 0.806 0.677 0.346

CLUSTAL X is a greedy based progressive alignment

method. When there are more sequences to be aligned,

the major problem with the methods is that mistakes in

the initial alignments of the most closely related

sequences are propagated to the multiple alignments.

The approach doesn’t work well on ref4. The

DIALIGN program constructs multiple alignment

iteratively using the results from segment-to-segment

comparisons. It works well on ref4 and ref5, but not

very good for ref1 to ref3. SAGA uses twenty-two

different genetic operators and each operator has a

probability of being chosen - that is to be dynamically

optimized during the run. QGMALIGN performs

better on ref2 than the other listed methods. In

addition, QGMALIGN can compete with CLUSTAL

X and SAGA on ref3 and ref4. Experimental results

showed that QGMALIGN obtained a better alignment

with advantages on global optimization when there are

more sequences to be aligned and the length of

sequence is nearly 400.

5.2. Comparisons and analysis

To study the effects of the various genetic operators on

the alignment, the comparisons of test results of the

use of quantum mutation operator and adding genetic

operators in it have been made. (See Table 8). The

experimental results show that the genetic optimization

operators are essential to obtain the better alignment.

They can improve the alignment with a lower cost,

because the program performs iterations from the 279

per 10 seconds before adding the genetic operators to

282 per 10 seconds after adding the genetic operators

on the average.

 The quantum rotation angle mutation operator

guides the evolutionary process using a single optimal

information. Although the optimal solutions of

information constantly changes, if the information

varies a little, it is easier for the process to fall in the

local optimal solution, especially for the difficult

multiple sequence alignment problem. The problem is

not the unimodal extreme optimization and also the

solutions of the problem are not unique. With genetic

operators, the QGMALIGN algorithm guides the

population towards the optimal solution, while

maintaining the diversity of the population during the

process of iterations. The added genetic operators

improve the efficiency of the algorithm.

(a) the convergent rate for 9rnt

(b) the convergent rate for 1aho

Fig. 9. The convergent rate of the algorithm in two cases.

The dashed line represents the convergent rate of the

algorithm with only quantum mutation operator in it.

F

it
n

es
s

Number of iterations

 25

The real line represents the convergent rate of the

algorithm with six genetic operators in it.

 The results in Fig. 9 show that the quantum

algorithm with six genetic operators performs better

on the data 1aho and 9rnt than the pure quantum

mutation algorithm.

 The algorithm with genetic operators converges

faster to the better solution and the quality of the

alignment is improved significantly.

6. CONCLUSION

This paper presents the Quantum Genetic algorithm

for Multiple sequence ALIGNment - QGMALIGN.

The QGMALIGN results show that QGMALIGN

performs better on ref2 than the most popular methods

(CLUSTALX, SAGA, DIALIGN, SB_PIMA, and

QGMALIGN). Also, QGMALIGN can compete with

CLUSTAL X and SAGA on ref3 and ref4. If there are

a lot of sequences to be aligned and the lengths of

sequences are near to 400, then QGMALIGN obtaines

the better alignment with advantages on global

optimization. The added genetic operators produced

a lower cost running time.

Table 8. The experimental results of the algorithm with different operators in it.

All operators Quantum mutation sequences Seq_no×length

SPS #Iterations/time SPS #Iterations/time

1plc_ref1 5×100 0.931 4061/28s 0.874 6535/35s

1csy_ref2 19×102 0.684 23479/677s 0.465 27134/789s

1idy_ref3 27×72 0.468 7044/228s 0.320 18633/653s

1pysA_ref4 4×820 0.207 16459/598s 0.103 30000/1223s

1pysA_ref5 10×340 0.176 30000/1375s 0.068 30000/1308s

Average — 0.493 16209/581.2s 0.366 22460/795.6s

Acknowledgments

This paper was supported by the National Natural

Science Foundation of China, Grant No.69601003 and

the National Young Natural Science Foundation of

China, Grant No.60705004.

References

 1. Serafim B. The many faces of sequence alignment.

Briefings in Bioinformatics 2005; 6(1): 6-22.

 2. Thompson JD, Higgins DG, Gibson TJ.

CLUSTAL W: Improving the sensitivity of

progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties

and weight matrix choice. Nucleic Acids Res 1994;

22(22): 4673−4680.

 3. Barton, G. J. and Sternberg, M. J. E. A strategy

for the rapid multiple alignment of protein

sequences. J. Mol. Biol. 1987; 198: 327–337.

 4. Notredame, C., Higgins, D. G. and Heringa, J.

T-Coffee: A novel method for fast and accurate

multiple sequence alignment. J. Mol. Biol. 2000;

302: 205– 217.

 5. K., Kuma, K. and Miyata, T. MAFFT: A novel

method for rapid multiple sequence alignment

based on fast Fourier transform. Nucleic Acids

Res. 2002; 30(14): 3059–3066.

 6. Edgar, R. C. MUSCLE: Multiple sequence

alignment with high accuracy and high throughput.

Nucleic Acids Res. 2004; 32(5): 1792–1797.

 7. Van Walle, I., Lasters, I. and Wyns, L. Align-m –

a new algorithm for multiple alignment of

highly divergent sequences. Bioinformatics 2004;

20(9):1428– 1435.

 8. Do, C. B., Brudno, M. and Batzoglou, S.

ProbCons: Probabilistic consistency-¬based

multiple alignment of amino acid sequences.

Genome Research 2005; 15:330-340.

 26

 9. Alexander V. Lukashin, Jacob Engelbrecht, and

S∅ren Brunak. Multiple alignment using

simulated annealing: branch point definition in

human mRNA splicing. Nucleic Acids Res. 1992;

20(10):2511–2516.

10. Alexander V Lukashin, Notredame C, Higgins D

G. SAGA: Sequence alignment by genetic

algorithm. Nucleic Acids Res. 1996;

24(8):1515−1524.

11. K H Han, J -H Kim. Quantum-inspired

Evolutionary Algorithm for a Class of

Combinatorial Optimization. IEEE Trans.

Evolutionary Computation 2002; 6(6): 580-593.

12. Hongwei Huo and Vojislav Stojkovic.

Applications of Quantum Computing in

Bioinformatics. The 6th annual international

conference on computational systems

bioinformatics CSB2007, Tutorial program PM2,

San Diego, California, August 13-17, 2007.

13. Notredame C, Holm L, Higgins D G. COFFEE:

an objective function for multiple sequence

alignments. Bioinformatics 1998; 14(5): 407-422.

