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Biological and pharmaceutical research relies heavily on microscopically imaging cell populations for understanding their structure and function. 

Much work has been done on automated analysis of biological images, but image analysis tools are generally focused only on extracting 

quantitative information for validating a particular hypothesis. Images contain much more information than is normally required for testing 

individual hypotheses. The lack of symbolic knowledge representation schemes for representing semantic image information and the absence of 

knowledge mining tools are the biggest obstacles in utilizing the full information content of these images. In this paper we first present a graph-

based scheme for integrated representation of semantic biological knowledge contained in cellular images acquired in spatial, spectral, and 

temporal dimensions. We then present a spatio-temporal knowledge mining framework for extracting non-trivial and previously unknown 

association rules from image data sets. This mechanism can change the role of biological imaging from a tool used to validate hypotheses to one 

used for automatically generating new hypotheses. Results for an apoptosis screen are also presented.  

1.   INTRODUCTION 

Microscopic imaging is extensively used to image cell 

samples in two or three spatial dimensions, a spectral 

dimension, and a temporal dimension.
1
 This leads to five-

dimensional image sets, and any combination of these 

dimensions can be acquired depending on the 

requirements of the application.
2
 The general approach is 

that biologists first develop a hypothesis and then image 

biological samples to validate their hypotheses. However, 

images contain much more information than is needed for 

analyzing a particular hypothesis. For example, a drug-

screening study may use an apoptosis assay and image 

analysis tools to find out which drug is best for inducing 

apoptosis in cancer cells. This type of analysis, while very 

useful for a particular application (apoptosis in cancer 

cells), is not able to extract all of the information from the 

imaging data. For example, let us assume there is a link 

between a cell undergoing apoptosis and induction of 

apoptosis in its neighboring cells after a certain time 

because of some underlying biological phenomenon. This 

information, while present in the images collected during 

the above mentioned drug screening study, will not be 

extracted. We believe a data mining approach for 

analyzing biological data can be extremely useful for 

harnessing the full potential of the information content of 

biological images. Such an approach can be used to 

generate new hypotheses and greatly facilitate biological 

research. Realization of this goal, however, requires the 

development of schemes for capturing the semantic 

content of biological images and development of data 

mining formalisms for extracting association rules. In 

order to achieve this goal, we present a graph-based 

knowledge representation scheme that captures the 

semantic knowledge contained in multi-dimensional 

biological images. Then we present a framework for 

extracting non-trivial, previously unknown association 

rules in such data. This approach can be used for 

analyzing large repositories of cellular images and can 

significantly help in biological discovery.  

Association-rule mining for knowledge discovery in 

databases was proposed by Agrawal et al. and has since 

been extensively used for finding association rules.
3
 

Application of these tools to imaging data is hampered by 

the fact that image data require the extraction and 

representation of semantic information before data 

mining algorithms can be applied. Classification and 

clustering techniques have been previously applied to 

image data in different domains such as medical imaging 

and weather monitoring
4
, but there has not been any work 

on association-rule mining on cellular images. The 

challenge lies in developing powerful knowledge 

representation schemes to capture the semantic 

information contained in multi-dimensional images and 

developing formalisms for mining association rules using 

these schemes. In this paper we propose a graph-based 

knowledge representation scheme and a data mining 

formalism for capturing the semantic image information 
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and for extracting association rules. This approach has the 

potential to exploit the maximum information content of 

imaging data for automated biological discovery and can 

potentially change the role of biological imaging from 

merely a tool for hypothesis validation to a more 

powerful tool for generating new hypotheses as well. 

2.   GRAPH-BASED REPRESENTATION 

OF SEMANTIC CONTENT 

Attribute relational graphs (ARGs) have been used for 

representing image content for content-based retrieval.
5
 

The nodes of the ARG represent the objects and the edges 

represent the relations. In order to develop an integrated 

representation for multi-dimensional biological images 

that include two or three spatial dimensions, a spectral, 

and a temporal dimension we extend the concept of an 

ARG to a colored attribute relational graph (CARG). A 

CARG is a special ARG where each node of the ARG 

contains a color attribute that specifies the spectral band 

(fluorescence channel) in which this image was acquired. 

Formally a CARG is a four tuple G = (V, E, Av, Ae) 

where V is a set of vertices, E is a set of edges between 

vertices, Av is a set of attributes of vertices, and Ae is a set 

of attributes of edges. The vertices represent the objects in 

the images and vertex attributes contain attributes of 

objects such as area, perimeter, texture, and shape 

descriptors. Edge attributes represent the spatial relations 

between objects. In our experiments we use four spatial 

relations that include ‘overlap’ (o), ‘contain’ (c), ‘near 

neighbor’ (n), and ‘far neighbor’ (f), and four object 

attributes that include area, major axis length, minor axis 

length, and perimeter. CARG captures the image 

information in three spatial dimensions and the spectral 

dimension. Information in the temporal dimension is 

captured using a temporal sequence of CARGs each 

representing the spatial and spectral information at a time 

instant. An example of a series of CARGs showing 3 cells 

imaged in three different fluorescence channels for an 

apoptosis screen is shown in Figure 1 (a-c). Here white, 

light gray, and dark gray nodes represent Hoechst, 

Annexin V fluorescein isothiocyanate (FITC), and 

propedium iodide (PI) respectively. At time instant 1, 

Cell 1 is in an early apoptotic state (overlap of white and 

light gray nodes) whereas it is in a late apoptotic state at 

time instants 2 and 3. Similarly, Cell 3 is in the live state 

(white node disjoint from other nodes) at time instant 1 

and 2 and in an early apoptotic state at time instant 3.  

  Most biological events involve spatio-temporal 

changes in the attributes of biological objects (cells, 

intracellular compartments) or changes in the spatial 

relations between different objects.
6,7

 The ARG model 

can be used for representing the information about spatio-

temporal events and the spatial relations among them. 

Each node of the ARG represents an event. Attributes of 

the nodes include the type of event, participating objects 

along with their attributes, start time, duration, and the 

decomposition into simpler events for composite events. 

For example an apoptosis event may be considered to be 

made up of sub-events such as ‘normal’ when cell is alive 

and ‘apoptotic’ when the cell undergoes apoptosis. Figure 

1(d) shows the representation of four apoptosis events as 

an ARG.  

3.   DATA MINING FRAMEWORK 

The graph-based knowledge representation scheme 

proposed in Section 2 provides a data structure for storing 

image information in terms of the objects and the events 

happening in the images. Data mining algorithms can 

then be applied on this symbolic representation. This can 

help discover interesting patterns in imaging data. Such 

patterns could be in the form of association rules between 

different features of biological objects (between 

roundness and size) or between features of biological 

objects and different semantic classes of objects (between 

roundness and mitotic state). These association rules may 

also have a temporal dependence (between roundness and 

size after a time interval, or between roundness and cell 

division after a time interval). In order to capture these 

patterns we mine six different types of rules as shown in 

Figure 2. Association rules are generally represented as 

(X→Y) where X is the antecedent and Y is the 

consequent. The support and confidence values for mined 

rules are defined as follows.   

 

Support = Number of transactions where both X and Y 

appear / Number of transactions in the database. 

 

Confidence = Number of transactions where both X and Y 

appear / Number of transactions where only X appears. 

4.   EXPERIMENTAL RESULTS AND 

DISCUSSION 

In this section we report the results of applying the 

association-rule mining algorithms to the images 

generated by an apoptosis screen. A fluorescent marker 

(Hoechst) was used for labeling the nuclei whereas 

Annexin-V-FITC was used to label cells as apoptotic or 

non-apoptotic. Nuclear features, including area, major 

axis length, minor axis length, and perimeter, were 

extracted. Nuclei neighbors were determined using the 

distance between the centroids of different nuclei. The 

extracted features were discretized by dividing the range 

of each feature into 4 ranges as shown in Table 1. 
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                   (a) t = 1                               (b) t = 2                                  (c) t = 3                                     (d)       

Fig. 1. (a-c) A sequence of CARGs as an integrated representation of spatial, spectral, and temporal information for three 

cells. White nodes represent nuclear stain which is used to identify the cells. Light gray nodes represent Annexin-V-FITC 

and dark gray nodes represent PI (d) Representation of 4 apoptosis events.  

 

Same object spatial rules  

YX(A),Attr(A)Attr YX ≠→.1                                        YX(A),SemClass(A)Attr YX ≠→.2  

YX(A),SemClass(A)SemClass YX ≠→.3                     YX(A),Attr(A)SemClass YX ≠→.4  

Same object temporal rules 

YX(A),Attr(A)Attr Y
TempRel

X ≠ →.1                           YX(A),SemClass(A)Attr Y
TempRel

X ≠ →.2  

YX(A),SemClass(A)SemClass Y
TempRel

X ≠ →.3        YX(A),Attr(A)SemClass Y
TempRel

X ≠ →.4  

Object neighborhood spatial rules 

od(A)NeighborhoBY,X(B),Attr(A)Attr YX ∈≠→.1              

od(A)NeighborhoBY,X(B),SemClass(A)Attr YX ∈≠→.2  

od(A)NeighborhoBY,X(B),SemClass(A)SemClass YX ∈≠→.3  

od(A)NeighborhoBY,X(A),Attr(A)SemClass YX ∈≠→.4  

Object neighborhood temporal rules 

od(A)NeighborhoBY,X(B),Attr(A)Attr Y
TempRel

X ∈≠ →.1  

od(A)NeighborhoBY,X(B),SemClass(A)Attr Y
TempRel

X ∈≠ →.2  

od(A)NeighborhoBY,X(B),SemClass(A)SemClass Y
TempRel

X ∈≠ →.3  

od(A)NeighborhoBY,X(A),Attr(A)SemClass Y
TempRel

X ∈≠ →.4  

Spatial event rules 

(A)Attr(A)Event YX →.1                                                   (A)Event(A)Event YX →.2           

ObjList(X)A,B(B),Event(A)Event YX ∈→.3                   od(A)NeighborhoB(B),Event(A)Event YX ∈→.4  

Temporal event rules 

{ }E,COD,M,O,C,S,TempRel(A),Attr(A)Event Y
TempRel

X ∈ →.1  

{ }E,COD,M,O,C,S,TempRel(A),Event(A)Event Y
TempRel

X ∈ →.2  

{ }E,COD,M,O,C,S,TempRel,ObjList(X)A,B(B),Event(A)Event Y
TempRel

X ∈∈ →.3  

{ }E,COD,M,O,C,S,TempRelod(A),NeighborhoB(B),Event(A)Event Y
TempRel

X ∈∈ →.4  

 

Fig. 2. Different types of spatial and temporal rules. (A)AttrX  means attribute X of object A, (A)SemClassX  means 

semantic class X involving object A, and (A)EventX  means event X involving object A. TempRel refers to the temporal 

relations between different events.
6
  

 

We also use two other features, ‘state’ and ‘nbr,’ where 

state can be either ‘live’ or ‘apoptotic’ and ‘nbr’ can be 

either ‘none,’ implying none of the cell’s neighbors is in 

apoptotic state or ‘oneplus,’ implying one or more of a 

cell’s neighbors are apoptotic. Association-rule mining 

formalism was then applied to the semantic information 

extracted from a set of 200 images (100 fields of view x 2 

fluorescent channels). Using a minimum support of 0.2 

and confidence of 0.6, a total of 90 rules were found. A 

subset of these rules is shown in Table 2. Some of these 

rules are obvious such as the dependence of area on the 

major and minor axis lengths. However the relationship 

between the apoptotic state of a cell and its features, or 

that between the apoptotic state of a cell and the state of 

its neighbors, can be a useful one. 
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Table 1. Feature ranges used for discretization of features. 

Feature Range1 Range2 Range3 Range4 

Area (A) 0<AR1<=200 200<AR2<=400 400<AR3<=600 600<AR4 

Major axis (Mj) 0<MajR1<=20 20<MajR2<=40 40<MajR3<=60 60<MajR4 

Minor axis (Mi) 0<MinR1<=10 10<MinR2<=20 20<MinR3<=30 30<MinR4 

Perimeter (P) 0<PR1<=50 50<PR2<=100 100<PR3<=150 150<PR4 

 

Table 2. Mined rules with support and confidence values. 

No. Antecedent Consequent Support Confidence 

1 Mj = MajR1 Mi = MinR2 0.447 0.981 

2 Mi = MinR2 A = AR2 0.585 0.778 

3 State = live Nbr = none 0.244 0.854 

4 State = apoptotic, Mj = MajR1 Mi = MinR2 0.274 0.992 

5 State = apoptotic, A = AR2 P = PR2, Mi = MR2 0.432 0.836 

6 Nbr = oneplus State = apoptotic 0.221 0.841 

7 P = PR2, Mi = MinR2 A = AR2 0.582 0.819 

8 Mi = MinR2, Nbr = none, State = apoptotic A = AR2 0.287 0.831 

9 P = PR2, A = AR2, Mj = MajR2 Mi = MinR2 0.301 1 

10 A = AR2, Mj = MajR1 P = PR2, Mi = MinR2 0.301 1 

 

 

5.   CONCLUSION 

Mining association rules from cellular images can be a 

powerful tool for discovering new biological knowledge 

in an automated manner. In this paper we have presented 

a graph-based model for representation of the semantic 

content of cellular images and a formalism for mining 

association rules at the level of object features and at the 

level of biological events. Our experiments did not 

involve temporal data mining, although our formalism 

provides for mining temporal association rules. In the 

future we plan to generate significantly large data sets for 

applying our data mining formalism on spatial as well as 

temporal data. 
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